OPTIMAL CONTROL APPLICATIONS AND METHODS 
Optim. Control Appl. Meth. 2010; 00:1–19 
Published online in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/oca 

A numerical method for computing optimal controls in feedback 
and digital forms and its application to the blowing-venting 
control system of manned submarines 

R. Font1 
, P. Pedregal2 
and F. Periago* 
1 
Departamento de Matematica Aplicada y Estad´ 
´istica, ETSI Industriales, Universidad Polit´

ecnica de Cartagena, 
30202 Cartagena, Spain 
2 
Departamento de Matem´

aticas, ETSI Industriales, Universidad de Castilla-La Mancha, 13071 Ciudad Real, Spain 

SUMMARY 

Based on the classical variational reformulation of optimal control problems we introduce a numerical 
scheme for solving those problems where the goal is the computation of optimal controls in feedback and 
digital form defined on a discrete time mesh. The algorithm reduces the computation of such controls to 
solving a suitable nonlinear mathematical programming problem where the unknowns are the controls and 
slope of the state variable of the original problem. The motivation for this study comes from the real-world 
engineering problem which consists of maneuvering a manned submarine by using the blowing-venting 
control system of the ballast tanks of the vehicle. After checking the proposed algorithm in an academic 
example, we apply it to the maneuvering problem of submarines whose mathematical model includes a state 
law which is composed of a system of twenty four nonlinear ordinary differential equations. Numerical 
results illustrate the performance of the numerical scheme. Copyright °c2010 John Wiley & Sons, Ltd. 

Received . . . 

KEY WORDS: 
Digital controls, closed-loop control system, variational reformulation, ballast tanks, 
manned submarines, blowing-venting operations. 

1. INTRODUCTION -PROBLEM FORMULATION 
1.1. Motivation 
Under certain circumstances, like an emergency, gathering intelligence missions or special 
operations, (military) manned submarines may need to perform manoeuvres with very specific 
requirements. In these cases, submarines often perform large and/or small blowing and venting 
operations of its ballast tanks to modify the buoyancy of the vehicle. This way, blowing and venting 
becomes an alternative (or complementary) tool for manoeuvring. Up to our best knowledge, these 
manoeuvres are currently performed based exclusively on the operator experience and, due to the 
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high degree of accuracy required, would enormously benefit from the implementation of a control 
system. Typically, the maneuvering control system of a manned submarine is composed of three 
movable hydrofoils (the rudder used for lateral steering, and stern and bow dive planes used for 
longitudinal maneuvering) and a propeller. In addition, or as an alternative in case of breakdown, 
manned submarines dispose of a number of ballast tanks distributed along its hull. When filled 
with water, they contribute with the submarine mass allowing it to submerge. They also act like a 
dispositive for emerging to the surface by blowing into the tanks air from very high pressure bottles 
which let water expel out the tanks. To fill the tanks with water again, air is vented out through a 
valve located at the top of each of the tanks. We refer the reader to [1, 2, 4, 13, 14] and more recently 
to [5], where the well-posedness character of a coupled system of blowing-venting of ballast tanks 
with the usual Feldman equations of motion is proved. 

The two main requirements to be satisfied by the automatic control system under consideration 
are: (1) controls should appear in feedback form in order to be able to correct errors in the modeling 
of the vehicle (for instance, in the estimation of the hydrodynamics coefficients) and/or the effects 
of disturbances acting on the surroundings of the submarine. (2) controls should be digital, i.e., 
piece-wise constant between two consecutive measurements of (some of) the state variables of the 
system. 

On the other hand, as is very well-known in the literature, the Calculus of Variations and the 
Pontryagin Maximum Principle provide very powerful techniques to solve a large class of dynamic 
optimal control problems where optimal controls only depend on the time variable, that is, they 
appear as solutions of open-loop control systems. From a practical point of view, this type of 
control is useful during the preliminary state of design of a mechanical system and to provide a 
set of optimal trajectories of a dynamical system (see [5] where this approach was used to solve 
the manoeuvrability problem described above). Moreover, it cannot be used directly in engineering 
control because a mathematical model of a real problem is not the real problem itself. It is just 
an approximation of a real physical problem. That is why closed-loop control systems are more 
appropriate in real-world engineering problems as the one described above. Nevertheless, as we shall 
show later on in this work, from the usual variational reformulation of optimal control problems (see 
for instance [9]) a numerical scheme can be derived to compute digital optimal controls in feedback 
form which can be successfully applied to solve the maneuvering problem for manned submarines 
indicated at the beginning. This is the main goal of the present work. 

1.2. Problem formulation 
To begin with, let us consider the following open-loop optimal control problem: given a fixed final 
time tf 
we look for a control u 
: 
[0;tf 
] 
. 
K 
. 
Rm 
which solves 

. 
Minimize in u 
: 
J 
(u)= 
. 
tf 
F 
(t, 
x 
(t)) 
dt 


t0 


subject to 

.
>>>>>>

<

(OCP) x. 
(t)= 
f 
(t, 
x 
(t) 
;u 
(t)) 


0

x 
(t0)= 
x

.
>>>>>>

. 
u 
(t) 
. 
K, 


where as usual x0 
is the initial condition and K 
constraints the admissible controls. 
Copyright cOptim. Control Appl. Meth. (2010)


. 
2010 John Wiley & Sons, Ltd. 
Prepared using ocaauth.cls DOI: 10.1002/oca 
�
COMPUTING OPTIMAL CONTROLS IN FEEDBACK AND DIGITAL FORMS 

We restrict our study to the case in which the integrand in the cost function does not depend on 
the control variable. This situation includes (but is not limited to) the so-called trajectory tracking 
problem where a desired trajectory is known and hence, the closed-loop control system aims at 
following as close as possible such a trajectory (see Subsection 4.2 for an example of this type). 
However, the algorithm proposed in this paper also works in the case where no reference trajectory 
appears in the cost function (see Section 3). The key point is that the control variable does not appear 
in the cost. 

As indicated above, by using the necessary optimality conditions we may compute a control in 
the form u 
= 
u 
(t) 
. 
However, in the present case the situation is a bit different: we have a time mesh 
t0 
<t1 
<t2 
< 
¢¢· 
<tN+1 
= 
tf 
, 
and at each discrete time tj 
we may (experimentally) measure 
the state of our system x 
(tj 
)= 
xj. According to this measurement we have to compute a control 

j

u= 
uj 
¡xj 
¢, which is constant in the time subinterval [tj 
;tj+1[, in such a way that the evolution of 
the state is optimal during that time subinterval, i.e., we wish to solve the problem 

j 
. 
= 
. 
tj+1

. 
Minimize in uj 
: 
Jj 
¡uF 
(t, 
x 
(t)) 
dt 


tj 


subject to 

.
>>>>>>

<

(OCPj) x. 
(t)= 
f 
¡t, 
x 
(t) 
;uj 
. 
;tj 
<t<tj+1 


x 
(tj)= 
xj

.
>>>>>>uj 
(t)= 
uj 
. 
K, 
tj 
= 
t<tj+1

. 


Our main goal in this paper is to derive a numerical scheme for computing the discrete feedback 

j

control law u= 
uj 
¡xj 
. 
. 
K. 


1.3. Organization of the rest of the paper 
In Section 2 we recall the classical variational reformulation of optimal control problems and use it 
to derive a numerical scheme for solving the feedback control problem (OCPj). As it can be seen 
below, in this reformulation of the control problem the state law is embedded into the cost function. 
As a consequence, the state law becomes an equality constraint in the resulting discrete numerical 
algorithm. Section 3 includes a very simple academic example. In absence of noise, in this specific 
example the order of convergence of the algorithm in the Lp-norm is O(h1=p). We also analyze 
the robustness of the algorithm with respect to sensor noise. For comparison reasons, we solve 
numerically the example by applying at each time node a well-known transcription method. Section 
4 is devoted to apply our algorithm to a real-life engineering problem. The system is a manned 
submarine and the control of the system is carried out by blowing and venting its 4 ballast tanks. At 
the mathematical level, in this example we have to deal with the following difficulties: (a) the state 
law is of high order (24 ordinary differential equations (ODEs)), (b) the equations are nonlinear, (c) 
the state law is not convex with respect to the state variable, and (d) the state law includes some 
non-differentiable terms like absolute values, namely the state law is only Lipschitz (see equations 
(9)-(14) below). In particular, this last point is, in principle, a difficulty to solve the problem by the 
usual method of using linear optimal feedback control theory for the locally linearized system. As 
for the cost function, it is of trajectory tracking-type. Numerical results seem to indicate a very nice 
performance of the proposed algorithm. Finally, in Section 5 we summarize the main contributions 
of the paper and describe some challenging related open problems. 
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2. DESCRIPTION OF THE NUMERICAL SCHEME 
We start by recalling that under suitable conditions (see for instance [9, Prop. 3.1] for the details), 
(OCP) is equivalent to the variational problem 

u2K, 
»=f(t;x;u) 


(VP) . 
Minimize in x 
: 
subject to 
J 
(x) 
= 
. 
tf 
t0 
x 
(t0) 
= 
x0 
f 
(t, 
x 
(t) 
, 
x. 
(t)) 
dt 
where the density f 
is given by 
f 
(t, 
x, 
») 
= 
min 
F 
(t, 
x) 
. 
(1) 

From now on in this section we assume that the mesh t0 
<t1 
<t2 
< 
¢¢· 
<tN+1 
= 
tf 
is given by 

tj+1 
= 
tj 
+ 
h, 
h 
=(tf 
- 
t0) 
=N, 
N 
. 
N. 


On this mesh (VP) rewrites as 

j

. 
Minimize in x 
: 
J(x)= 
. 
tj+1 
f 
(t, 
x 
(t) 
;x. 
(t)) 
dt 


tj

(VPj) 
jsubject to x 
(tj)= 
x

where f 
is given by (1) and the initial conditions xj 
are assumed to be known. Since no fixed final 
condition is imposed in (VPj 
), we may compute the optimal slope »j 
at each node tj 
. 
To this end, 
we approximate the cost J
j 
(x) 
by the right-point rule, i.e., 

. 
tj+1

j

J(x)= 
f 
(t, 
x 
(t) 
;x 
. 
(t)) 
dt 
˜ 
hf 
¡tj 
+ 
h, 
xj 
+ 
h»j;»j. 
, 
tj 


where we have considered the first-order approximation x 
(tj+1) 
˜ 
xj 
+ 
h»j, 
with x 
(tj 
)= 
xj 
and 
x. 
(tj)= 
»j. 
Hence, an approximation »j 
of the optimal slope »j 
at tj 
is the solution to 

h 


min 
f 
¡tj 
+ 
h, 
xj 
+ 
h», 
»¢. 


. 


Substituting this last problem into (1) we obtain the double optimization problem 

min 
min 
F 
¡tj 
+ 
h, 
xj 
+ 
h». 
. 
»u2K, 
»=f(tj 
+h;xj+h»;u) 


Finally, for h 
small enough, an approximation of the optimal slope »j 
and of the optimal feedback 

h 
control uj 
is given as the solution of the constrained nonlinear mathematical programming problem 

h 


8Minimize in (u, 
»): 
F 
¡tj 
+ 
h, 
xj 
+ 
h»¢

>

<

(NPPj 
) subject to u 
. 
K

h

>

. 
. 
= 
f 
¡tj 
+ 
h, 
xj 
+ 
h», 
u. 


To sum up, the proposed numerical scheme reduces to solving at each node the problem (NPPj 
).

h
j

Notice that we assume that the value of the state variable at the nodes ©x= 
x 
(tj)ªis known. 

0·j·N 
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3. AN ACADEMIC EXAMPLE 
In order to understand more deeply the algorithm introduced in the preceding section , next we 
analyze a simple academic example which can be solved explicitly. Consider the problem 

. 
Minimize in u 
: 
J 
(u)= 
. 
1 
x2 
(t) 
dt

0 


subject to 

.
>>>>>>

<

(OCP1) x. 
(t)= 
¡x 
(t)+ 
u 
(t) 
, 
0 
<t< 
1 
x 
(0) 
= 
1.
>>>>>>ju 
(t)j= 
1, 
0 
= 
t 
= 
1:

. 


The variational reformulation of (OCP1) takes the form 

. 
Minimize in x 
: 
J 
(x)= 
. 
1 
f 
(t, 
x 
(t) 
;x. 
(t)) 
dt

0

(VP1) 

subject to x 
(0) 
= 
1, 


where 

. 
minu2K 
x2 
(t) 
if . 
= 
¡x 
(t)+ 
u 
f 
(t, 
x, 
»)= 


+8 
else. 

It is evident that the optimal way to proceed is by taking the steepest possible descent, i.e., u 
= 
¡1 
(and therefore . 
= 
¡x 
- 
1) until x 
(t 
¤)=0. 
From here until the end (t 
= 
1), 
we put u 
=0. 
See 
Figure 1 for a geometrical representation of the problem in the x 
- 
. 
plane. Thus, the optimal 

Figure 1. Picture of the set where f 
is finite and optimal solution to (VP1). 
control and state of this problem are given explicitly by 

. 
¡1, 
0 
= 
t< 
ln 
2 
. 
2e¡t 
- 
1, 
0 
= 
t< 
ln 
2 


uopt 
(t)= 
and xopt 
(t)= 
(2)

0, 
ln 
2 
= 
t 
= 
10, 
ln 
2 
= 
t 
= 
1. 


As for the optimal cost we obtain 

. 
ln 
2 


J 
(xopt)= 
¡2e 
¡t 
- 
1¢2 
dt 
= 
¡0:5 
+ 
ln2 
˜ 
0:1931. 


0 
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step h 
= 


Figure 2. Pictures for the optimal feedback control u(t), 0 
= 
t 
= 
1 
(left) and its associated state x(t), 
0 
= 
t 
= 
1 
(right ) for h 
=0:1 
(’*’ lines) and h 
=0:001 
(’-’ lines). 
These figures show the convergence of the discrete solution (as given by (4)) to the exact solution 
(2). Indeed, a simple computation shows that for a fixed h 
=1=N 
there exists j0 
such that 

2

ln 
= 
tj0 
< 
ln 
2 
<tj0+1:

1+ 
h 
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h 
. 
0

00.10.20.30.40.50.60.70.80.91-1-0.8-0.6-0.4-0.200.20.4
Figure 3. Left column shows pictures for the unperturbed and affected by additive white noise state variable 
x(t), 0 
= 
t 
= 
1 
for s 
=0:1 
(top), s 
=0:001 
(middle) and s 
=0:0001 
(bottom). With same order, right 
column shows pictures for the corresponding control variable u(t), 0 
= 
t 
= 
1. 
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Since the perturbation with additive white noise considered above is random, in order to support 
the corresponding results within a probabilistic criterium, it is necessary to repeat this random 
perturbation a number of times. Figure 4 shows results after 100 realizations of the same experiment. 

¾

Horizontal axis represents the error between unperturbed state xh 
(t) 
and perturbed one x(t) 
, 
and

h 
¾

vertical axis displays the induced errors in the controls uh 
(t) 
and u(t) 
(both obtained by using 

h 


the proposed algorithm) for s 
=0:1 
and s 
=0:0001, 
in the L2 
and L8 
norms. Each point in the 
pictures of Figure 4 represents the result corresponding to an experiment (in total, 100 realizations 
of the experiment). As it is observed from Figure 4 (top left), a perturbation of the order of 0:3 
units 
in the L1-norm in the state variable gives a maximum (2 
units of error in the L1-norm) in the 
control variable. This is due to the saturation of the control variable at §1, also visible in Figure 3 
(top-right). Similarly, an error of order 10¡4 
in the L1-norm in the state variable gives an error of 
order 10¡2 
units in the same norm in the control variable (Figure 4, top right). Figure 4, bottom left 
and bottom right, shows the same type of results but with respect to the L2-norm. 

Figure 4. Results for error induced in the control variable by a random perturbation in the state variable 

¾¾

after 100 
repetitions of the experiment. kxh 
- 
xhkvs. kuh 
- 
uhkfor s 
=0:1 
(top

L1(0;1) 
L1(0;1)

¾¾

left) and s 
=0:0001 
(top right). kxh 
- 
xhkvs. kuh 
- 
uhkfor s 
=0:1 
(bottom left) and 

L2(0;1) 
L2(0;1) 


s 
=0:0001 
(bottom right). 

Finally, for the sake of comparison, we solve problem (OCP1), with feedback controls, by 
applying at each node of the time mesh a simple transcription method. Precisely, the state law 
x. 
(t)= 
¡x 
(t)+ 
u 
(t) 
in the time subinterval [tj 
;tj+1[ 
is approximated by a first-order Taylor 
expansion as 

j+1 
- 
xj

x

j

= 
¡xj 
+ 
u. 


h 
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Similarly, we approximate the integral cost in the same subinterval by the right-point rule. These 
two approximations lead to the family of discreet optimization problems 

. 
Minimize in (uj 
;xj+1): 
¡xj+1¢2 


.
>>>>subject to

. 
x¡xj 
(5)

j+1j 
= 
¡xj 
+ 
u;

h

.
>>>>uj 
. 
[¡1, 
1] 
:

. 


The solution of this nonlinear mathematical programming problem can be easily calculated, namely 

jh 
h

. 
¡1¡h 
xif ¡= 
xj 
·
jh 
1¡h 
1¡h

u= 


¡1 
otherwise, 

and xj+1 
= 
(1 
- 
h)xj 
+ 
huj 
. This solution is different from (4), but numerical results are quite 
similar to the ones obtained by using the algorithm proposed in this paper. Very likely this is 
specific of this particular example where the right-hand side of the state law is linear and therefore 
its solution is smooth. Consequently, a first-order Taylor expansion gives a good approximation of 
x0(t) 
in [tj;tj+1[ 
for h 
small enough. Also notice that although xj+1 
is assumed to be a measured 
datum, in problem (5) it appears as an artificial variable. Therefore, when passing from one node tj 
of the time mesh to the next one tj+1 
the value of xj+1 
must be updated with the measured datum. 
It is also interesting to point out that the difference between problems (3) and (5) is related not only 
to the unknowns -(u, 
») 
in (3) and (u, 
xj+1) 
in (5) -but also to the way these variables appear in 
the resulting equality constraint. In the first case, . 
appears (in general) in implicit form and in the 
second one xj+1 
appears in explicit form. 

4. APPLICATION TO THE CONTROL OF BLOWING AND VENTING OF BALLAST TANKS 
IN MANNED SUBMARINES 
As we said before, the blowing of ballast tanks can be used in case of emergency, like an onboard 
fire or flood, as a dispositive to emerge to the surface. The typical protocol for these emergency 
rising manoeuvres is to use the diving planes to pitch the submarine up, increase speed, and blow 
the tanks to drive the submarine to the surface with buoyancy. However, as discussed in [1, 14], 
this may cause submarines to experience large roll oscillations on the surface. This undesired 
behavior is caused by a high emergence roll angle. For these reasons, it is interesting to check if the 
implementation of a control system over the blowing/venting processes could improve the behavior 
of the submarine during these manoeuvres. In this section, we use the proposed closed-loop scheme 
to track an optimal trajectory, in the sense of minimizing the roll angle while rising within a desired 
time, calculated using the open-loop optimal control scheme proposed in [5]. In Subsection 4.1 we 
briefly describe the mathematical model for both processes as well as their influence over the vehicle 
behavior. We refer the reader to [4, 5] for a complete description of the resulting model as well as 
a detailed analysis of the well-posedness of the optimal control problem. Finally, in Subsection 4.2 
we present the results obtained by the proposed feedback control scheme in an emergency rising 
manoeuvre. 
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4.1. Mathematical model 
Blowing/venting model: The blowing/venting system is composed of ballast tank, pressure 
bottle, blowing valve and venting valve. The air flow from the bottle can be modeled as the one 
directional, steady flow of an ideal compressible gas. At the beginning of blowing, the flow is 
supersonic due to the high pressure difference between bottle and tank. As air flows out of the 
bottle, this difference decreases and the flow becomes subsonic below the critical pressure ratio 

. 


= 
¡°+1

Pc 
¢°¡1 
, with . 
the isentropic constant.

2 


Let si 
. 
L8 
(0;tf 
; 
[0, 
1]) 
denote the variable aperture of the blowing valve in the i¡th ballast 
tank. The equation for the mass of air in the i¡th bottle in both the supersonic and the subsonic 
cases is 

.
¶
1 


2

µmFi(t)°+1pF 
0 
m_Fi(t)= 
si(t)A¹i(pBi(t);mFi(t)) 
(6) 

m 
. 
VF

F 
0

´- 
°+1 
¶1 


°¡1 
VF 
2

µ. 
2

where A 
= 
m_F 
max 
, with m_F 
max 
the maximum mass flow rate from

°+1 


°pF 
0mF 
0 


the bottle, experimentally measured, and 

8.
>>>>>>>>>>>>>

. 


. 
°+1 


2 
°¡1 
pF

. 
. 
;Pc 
·

°+1 


pB 


. 
@@

0. 


1C

A, 


mF 
0 


pF 


= 
1. 


°+1

0@

2 


- 


1. 


1. 


. 


°

¹(pB;mF 
)= 


2. 


pB 


pB 


pF

1 
< 


<Pc

. 
mF 
´. 


. 
mF 
´°

.
>>>>>>>>>>>>>

. 


. 
- 
1

pB

pF 
0 


pF 
0

mF 
0 


0, 


pB 


The mass flow through the venting valve is obtained similarly, although in this case only subsonic 
flow is considered. The variation in the mass of air in the bottle is the difference between the mass 
flow rate from the bottle and the mass flow rate through the venting valve. Let si 
. 
L8 
(0;tf 
; 
[0, 
1]) 
denote the aperture of the i¡th venting valve. Then, the equation for the mass of air in the tank is 

si(t)AvpBi(t) 


m_Bi(t)+ 
_mFi(t)= 
¡¹i(¦(t)) 
, 
(7)pRgTB 


where ¹i(¦(t)) 
is a function of the tank and outside pressures obtained by curve fitting from 
experimental measures. 

Finally, the variation in the tank pressure is obtained from the perfect gas equation as 

mBi(t) 
pBi(t)qBi(t) 


p_Bi(t) 
- 
m_Bi(t)= 
¡, 
(8) 
pBi(t) 
RgTB 


where qBi(t) 
is the water flow through the flood port, obtained by applying the Euler equation at 
both sides of the flood port. We refer the reader to [5] for a more details. 

Vehicle motion: The motion of a 6-degrees-of-freedom (DOF) submarine is usually described 
using two different reference frames: an earth-fixed reference frame, were the position and 
orientation of the vehicle are measured, and a moving reference frame, fixed to the body, where 
the linear and angular velocities are measured. The state variables are then x, 
y, 
z, the vehicle 
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coordinates, Á, 
µ, 
Ã, the roll, pitch and yaw angle, u, 
v, 
w, the linear velocities and p, 
q, 
r, the angular 
velocities. These variables are usually described using the Feldman [3] 6 DOF submarine equations 
of motion which include a set of six kinematic equations (see [6, p. 12]) and the six dynamic 
equations. These latter equations were adapted to the particular characteristics of a prototype 
developed by the company Navantia S.A. Shipyard (Spain) in [8] and are described next. 

AXIAL FORCE EQUATION: 

m[_u 
- 
vr 
+ 
wq 
- 
xG(q 
2 
+ 
r 
2)+ 
yG(pq 
- 
r_) 
+ 
zG(pr 
+_q)] 
. 
00. 
. 
. 
0. 
. 


= 
l4[Xq 
2 
+ 
Xr 
2 
+ 
X 
rp 
+ 
X 
qjqjqjqj]+ 
l3[Xu_+ 
X 
vr 
+ 
X 
wq]

qqrrrpu_vrwq

22 


. 
00. 
. 


+ 
l2[Xu 
2 
+ 
Xv 
2 
+ 
Xw 
2 
+ 
X 
wjwjwjwj] 
(9) 
uuvvww

2 


. 
00. 


+ 
l2[Xu 
2±2 
+ 
Xu 
2±2 
+ 
Xu 
2±2] 
- 
(W 
- 
B) 
sin(µ)+ 
½T 
(1 
- 
tp)
±r±r 
r±s±s 
s±b±b 
b

2 


LATERAL FORCE EQUATION: 

m[_v 
- 
wp 
+ 
ur 
- 
yG(r 
2 
+ 
p 
2)+ 
zG(qr 
- 
p_) 
+ 
xG(qp 
+_r)] 
. 
00. 
. 
. 
. 
. 
0. 


= 
l4[Yr_r_+ 
Yp_p_+ 
Yrjrjrjr| 
+ 
Ypqpq]+ 
l3[Yr 
ur 
+ 
Yp 
up 
+ 
Yv_v_+ 
Ywpwp]

22 


(10)
. 
2)

l2[Y* 
u 
2 
+ 
Yv 
uv 
+ 
YvjvjN 
vj(v 
2 
+ 
w

2 


12

j]

+ 


. 
. 
1 
. 
. 


+ 
l2[Yu 
2±r 
+ 
Y 
. 
´u 
2±r(. 
- 
)C]+ 
l2YvwN 
vw 
+(W 
- 
B) 
cos(µ) 
sin(Á)
±r 
±r

2 
C 
2 


NORMAL FORCE EQUATION: 

m[_w 
- 
uq 
+ 
vp 
- 
zG(p 
2 
+ 
q 
2)+ 
xG(rp 
- 
q_) 
+ 
yG(rq 
+_p)] 


. 
0. 
. 
. 
00. 
. 


= 
l4[Zq_q_+ 
Zqjqjqjq| 
+ 
Zrrr 
2]+ 
l3[Zw_w_+ 
Zquq 
+ 
Zvpvp 
+ 
Zvrvr]

22 


(11)
½. 
2)

l2[Z¤u 
2 
+ 
Zwuw 
+ 
Zvvv 
2]+ 
l2[Zjwjujw| 
+ 
ZwwN 
jw| 
(v 
2 
+ 
w

22 


12

]

+ 


1

. 


l2 


2±s 


2±b 
+ 
Z 


´u 


2±s 


+(W 
- 
B) 
cos(µ) 
cos(Á)
+ 


+ 
Z 
. 
- 


C

C 


Z 


u 


u

±s 


±b 


±s

2 


ROLLING MOMENT EQUATION: 

Ixp_+(Iz 
- 
Iy)qr 
- 
Izx 
r_- 
Izxpq 
+ 
Iyzr 
2 
- 
Iyzq 
2 
+ 
Ixypr 
- 
Ixyq. 


myGw_- 
myGuq 
+ 
myGvp 
- 
mzGv_+ 
mzGwp 
- 
mzGur 
. 
. 
. 
. 
. 
. 
. 
. 
. 
. 


= 
l5Kp_p_+ 
l5Kr_r_+ 
l5Kqrqr 
+ 
l5Kpjpjpjp| 
+ 
l5Krjrjrjrj

2222 
2 


. 
. 
. 
. 
. 
. 
. 
. 
(12)

+ 
l4Kpup 
+ 
l4Krur 
+ 
l4Kv_v_+ 
l4Kwpwp 
2 
222 


. 
. 
. 
. 
. 
. 
. 
. 


+ 
l3K¤u 
2 
+ 
l3K 
uv 
+ 
l3K 
vjvjvjv| 
+ 
l3Ku 
2±r
v±r

222 
2 


+(YGW 
- 
YBB) 
cos(µ) 
cos(Á) 
- 
(ZGW 
- 
ZBB) 
cos(µ) 
sin(Á) 
- 
½Q 
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PITCHING MOMENT EQUATION: 
Iyq_+(Ix 
- 
Iz)rp 
- 
(_p 
+ 
qr)Ixy 
+(p 
2 
- 
r 
2)Izx 
+(qp 
- 
r_)Iyz 


+ 
m[zG(_u 
- 
vr 
+ 
wq) 
- 
xG(_w 
- 
uq 
+ 
vp)] 
. 
00. 
. 
. 
0. 
. 
= 
l5[Mq_+ 
M 
rp 
+ 
Mqjqjqjq| 
+ 
Mr 
2]+ 
l4[Mw_+ 
M 
uq 
+ 
M 
vr]

q_rprrw_qvr

22 


l3 
hM 
i

½
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¤u 
uw 
+ 
Mv 


2 
+ 
Mwvv
2 
+ 
MwjwjN 
w 
.
¯¯¯
(v 
2 
+ 
w 
2)

+ 


(13)
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. 
2)

l3[M 
vw 
+ 
Mjwjujw| 
+ 
M 
jw(v 
2 
+ 
w

vwww

2 


12

j]

+ 


1

. 


l3 


2±s 


2±b 
+ 
M 


´u 


2±s

+ 


+ 
M 
. 
¡

M 


C

u 


u

±s 


±b 


±s
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C 


- 
(xGW 
- 
xBB) 
cos(µ) 
cos(Á) 
- 
(zGW 
- 
zBB) 
sin(µ) 


YAWING MOMENT EQUATION: 

Izr_+(Iy 
- 
Ix)pq 
- 
(_q 
+ 
rp)Iyz 
+(q 
2 
- 
p 
2)Ixy 
+(rq 
- 
p_)Izx 


+ 
m[xG(_v 
- 
wp 
+ 
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- 
yG(_u 
- 
vr 
+ 
wq)] 
. 
0. 
0. 
. 
00. 


= 
l5[Nr_r_+ 
N 
rjrjrjr| 
+ 
Np_p_+ 
Npqpq]+ 
l4[Npup 
+ 
Nrur 
+ 
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. 
0. 
. 


l3[N¤u 
2 
+ 
Nvuv 
+ 
N 
vjvjN 
v 
.
¯¯¯
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w 
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2
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1 
¶¸
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. 


l3 
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2±r 


l3N

+ 


+ 
N 
+

. 
¡

N 


C

´u

±r 


+(xGW 
- 
xBB) 
cos(µ) 
sin(Á)+(yGW 
- 
yBB) 
sin(µ) 
The above equations assume the mass of the submarine to be constant. As water flows in or 
out of the tanks there will be mass variations at several points of the vehicle. To account to this 
mass variations, we need to write mass (m), weight (W 
), moments and products of inertia (Ix, Iy, 
Iz, Ixy,and location of the center of gravity (xG, yG, zG), formerly constant, as a function of the 
amount of water in the tanks. To this end, let m0 
be the initial mass of the submarine (with all 
tanks completely filled with water) and ¢mi 
the mass loss in the i¡th tank. It is 0 
when the tank is 
completely filled with water, and reaches its maximum value when it empties. The volume of water 
that has left the tank is equal to the volume occupied by air except for the initial air volume in the 
tank, VB0, which depends on the initial mass of air in the tank, mB0, and the initial depth. The mass 
loss in the i¡th tank can be obtained by multiplying this volume by the density of water, ½, that is, 

¢mi(t) 
= 
. 
(VBi(t) 
- 
VB0) 
= 
. 
µmBi(t)RgTB 
pBi(t) 
- 
VB0 
. 
. 
(15) 
The momentary mass of the submarine is then 
m(t) 
= 
m0 
- 
N. 
¢mi(t), 
(16) 
i=1 


u 


vwN 
vw

±r

2 


2

C 


The rest of the parameters are calculated using an analogous reasoning. 
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Optimal control problem: We denote the state vector as 

x 
= 
x(t)= 
h[mFi 
(t);mBi 
(t);pBi 
(t)], 
x, 
y, 
z, 
Á, 
µ, 
Ã, 
u, 
v, 
w, 
p, 
q, 
riT 
;

1·i·N 


where N 
is the number of ballast tanks. This means that the vector state x 
belongs to R3N+12. The 
control vector is given by 

u(t)=[si(t);si(t)]T 


1·i·N 
, 


si 
and si 
being, respectively, the aperture of blowing and venting valves of the i-th tank. So, 
u 
. 
R2N 
. The state law is composed by a set of equations (6)-(8) for each of the tanks (four tanks 
are considered in this work) and the 12 Feldman equations of motion as described above. In compact 
form we write these equations as 

A(x(t))x_(t)= 
f 
(t, 
x(t), 
u(t)) 
, 
(17) 

where A(x(t)) 
2M(3N+12)£(3N+12) 
and f 
(t, 
x(t), 
u(t)) 
. 
R3N+12 
for every t> 
0. 

Given an initial state x 
(0) 
= 
x0 
and a desired final target xtf 
, the goal is to calculate the vector 
of control u 
= 
u(t), which is able to draw our system from the initial state x0 
to (or near to) the 
final one xtf 
in a given time tf 
, also minimizing a cost functional. In mathematical terms we have 

. 
Minimize in u 
: 
J 
(u) 
= 
F 
(x(tf 
), 
xtf 
) 
+ 
. 
tf 
F 
(t, 
x 
(t)) 
dt 
0 
.
>>>>>>>>>>>
. 
subject to A(x(t)) 
_x(t) 
= 
f(t, 
x(t), 
u(t)) 
x(0) 
= 
x0 
(Ptf 
) 
0 
= 
si(t) 
= 
1, 
1 
= 
i 
= 
N 
.
>>>>>>>>>>>
. 
0 
= 
si(t) 
= 
1, 
1 
= 
i 
= 
N. 


Typically, 

3N+12

tf 
´2 


F 
¡x(tf 
), 
xtf 
. 
= 
. 
®j 
³xj 
(tf 
) 
- 
x 
(19)

j 
j=1 


with ®j 
> 
0 
penalty parameters, and 

3N+12

F 
(t, 
x(t)) 
= 
. 
¯j 
(xj 
(t) 
- 
xj 
(t))2 
(20) 

j=1 


with ¯j 
> 
0 
also weight parameters and x(t)=[xj(t)] 
a desired trajectory. 

4.2. An emergency rising manoeuvre 
To test the capabilities and robustness of the closed-loop scheme introduced in Section 2, this 
section presents the results of a numerical simulation carried out using Matlab. In this simulation, 
the closed-loop control is used to perform an emergency rising manoeuvre correcting for errors in 
both the modeling and the measurement of the state variables. This manoeuvre is the same that was 
addressed in [5] by using an open-loop control system. Initial depth is 100 m and initial speed is 2 
m/s. At t 
=0 
the stern and bow planes are set to ¡20 
and 20 
degrees respectively and the propeller 
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is set to 150 rpm. At the same time, the control system starts acting from t 
=0 
to t 
= 
30 
s. The 
proposed control scheme is composed of the following main steps: 

Step 1: Solve the optimal control problem (Ptf 
) in the desired [0;tf 
] 
time interval to compute 
the optimal controls and its associated optimal trajectory. In this particular case, we look to achieve 
three main objectives: 

• 
Submarine must rise within a certain time. 
• 
Rising pitch angle must be around 20 degrees and never above 25 degrees. 
• 
Roll angle must be as close as possible to zero throughout all the simulation. 
These objectives can be expressed in mathematical terms as 

tf 
tf

tf 
µtf

. 
z= 
x 
= 
75, 
= 
x 
= 
10:

15 
17

.
>>>>Á(t)= 
x16(t)=0 
. 
t 
. 
[0, 
30]:

. 


®15 
= 
®17 
=1;®j 
=0;j 
= 
156
, 
17.
>>>>¯16 
=5, 
6

¯j 
=0;j 
= 
16

. 


This way, (Ptf 
) takes the form (OCP2): 

. 
Minimize in u 
: 
J(u)=(z(30) 
- 
75)2 
+(µ(30) 
- 
10)2 
+5 
. 
30 
Á2(t)dt

0 


subject to A(x(t))x_(t)= 
f(t, 
x(t), 
u(t)) 


.
>>>>>>>>>>

. 
x(0) 
= 
³[mF 
0i 
;mB0i 
;pB0i 
]1·i·4 
, 
0, 
0, 
100, 
0, 
0, 
0, 
2, 
0, 
0, 
0, 
0, 
0. 


0 
= 
si(t) 
= 
1, 
1 
= 
i 
= 
4

.
>>>>>>>>>>0 
= 
si(t) 
= 
1, 
1 
= 
i 
= 
4;

. 


where the initial mass of air in the bottles is mF 
0i 
= 
237:8376 
Kg, the initial mass of air in the tanks 
is mB0i 
=0:0126 
Kg, and the initial pressure in the tanks is pB0i 
=1:0846 
× 
106 
Pa. (OCP2) is 
solved using a gradient descend method with projection (see [5] for more details). 

Step 2: Let xopt(t) 
be the optimal trajectory obtained in the previous step. Then, as described 
in Section 2, solve the following trajectory tracking problem: 

8. 
tf 


Minimize in u 
: 
J(u)= 
(x(t) 
- 
xopt(t))2 
dt 


0 


subject to A(x(t))x_(t)= 
f(t, 
x(t), 
u(t)) 


.
>>>>>>>>>>>

. 


x(0) 
= 
x0 


0 
= 
si(t) 
= 
1, 
1 
= 
i 
= 
4 


.
>>>>>>>>>>>0 
= 
si(t) 
= 
1, 
1 
= 
i 
= 
4:

. 


This trajectory tracking problem is addressed as follows: 

a. Apply the optimal controls calculated in Step 1 during the first [t0;t0 
+ 
h] 
subinterval. 
b. At t 
= 
t0 
+ 
h 
measure the real values of the state variables. 
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c. 
Using this information and the optimal trajectory xopt, solve the associated nonlinear 
mathematical programming problem (as described in general form in (NPPj 
)) to obtain the 
h

controls for the [t0 
+ 
h, 
t0 
+2h] 
subinterval. 

d. 
Repeat steps b and c for each time subinterval. 
Note that in Step b above we need to measure the real values of state variables at each time node 
tj. In this numerical simulation the (simulated) measured values are obtained solving equations (6)


(8) and (9)-(14). To simulate sensor noise, white noise is added to each of the relevant variables: the 
error is considered to be §2 
m in the vehicle position and §0:25 
degrees in the vehicle orientation. 
Additionally, errors in the modeling are simulated by considering that the real maximum mass flow 
rate from the bottle is m_F 
max;real 
= 
¡35 
kg/s instead of m_F 
max 
= 
¡20 
kg/s considered in the 
modeling, i.e. the mass flow rate from the bottle was underestimated in the modeling. This way, 
m_Fmax 
is used by the control algorithm but m_F 
max;real 
is used instead when solving (6)-(8) and 
(9)-(14) to obtain the values of state variables that are then perturbed as described above. These 
perturbed data are used as the (simulated) real values of the state variables in Step b. 
When solving (OCP2) 
in Step 1, a constant value for the controls, si(t)=0:5;si(t)=0 
. 
t 
is 
used as initialization. We refer to this initialization as standard manoeuvre since this is, although 
simplified, what is currently performed in real operation. This standard manoeuvre (see [5]) leads 
to roll angles around 3¡4 degrees throughout most of the simulation time. 

The chosen time step for the feedback algorithm is h 
=2 
s. At each tj 
the corresponding nonlinear 
programming problem has been solved using the Method of Moving Asymptotes (MMA) [12], an 
iterative process in which a strictly convex approximating problem is generated at each iteration and 
solved using a dual method. 

From the engineering point of view, the rate at which the controls can change is limited by the 
characteristics of the real mechanical systems involved, in this case the blowing/venting valves and 
actuators. For this reason, it may be interesting to limit the difference between the controls calculated 
at two consecutive time steps. Doing so does not introduce any changes in the above formulation. 
Indeed, if no limitation in the control change is considered, we solve (NPPj 
) 
looking for controls 

h

uj 
. 
K 
= 
[0, 
1]8 
. 
j. If this limitation is considered, the set K 
will change at each time step j. This 

jj¡1 
j¡1

way, u. 
hmax(0;u- 
¢), 
min(u+¢, 
1)i, with . 
the desired maximum difference. 

ii 
i 


We have simulated the emergency rising manoeuvre described above in two different scenarios: 
Scenario 1, with no limitation in the difference between two consecutive controls and Scenario 2, 
where this difference is limited to ¢=0:2. Results for both scenarios are shown in figures 5 to 8. 
Figures 5 and 6 show the value of vehicle depth, roll angle and pitch angle for the optimal trajectory 
without considering errors in the modeling (dotted lines; named Reference Trajectory in figures 5 
and 6), open-loop controls where errors in the modeling have been taken into account (dashed lines; 
named No Feedback Control in figures 5 and 6), and closed-loop controls obtained by using the 
algorithm described in Section 2 and where errors in the modeling and white noise are considered 
(solid lines; named Feedback Control in figures 5 and 6) for both scenarios (Scenario 1, Figure 5; 
Scenario 2, Figure 6). The perturbed data used as (simulated) measured values of state variables are 
shown as ticks (*). The values of the controls are plotted in figures 7 (blowing valves) and 8 (venting 
valves). The optimal open loop controls are shown in dotted lines and the closed-loop controls for 
Scenario 1 and Scenario 2 are shown respectively in solid and dash-dot lines. In both cases, errors 
in the modeling and white noise have been taken into account. 
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Figure 5. Depth, roll and pitch angle for optimal trajectory without errors in the modeling (dotted lines Reference 
Trajectory), open-loop controls obtained by taking into account errors in the modeling (dashed 
lines -No Feedback Control), and closed-loop controlled manoeuvre by taking into account errors in the 
modeling and white noise (solid lines -Feedback Control) for Scenario 1. 

Figure 6. Depth, roll and pitch angle for optimal trajectory (without errors in the modeling (dotted lines Reference 
Trajectory), open-loop controls obtained by taking into account errors in the modeling (dashed 
lines -No Feedback Control), and closed-loop controlled manoeuvre by taking into account errors in the 
modeling and white noise (solid lines -Feedback Control) for Scenario 2. 

Although the convenience of the use of venting valves during an emergency rise can be arguable 
and is indeed not a usual practice, it is used here to fully explore the potential of the control 
system. Moreover, the system is given the freedom to simultaneously open both valves. Very similar 
although slightly worse results can be obtained by using only the blowing valves. Although taking 
opposite actions at the same time may seem inefficient at first glance, it is not an uncommon practice, 
allowing for smoother transitions. Consider, for example, the case in which a brake is progressively 
released while at the same time the throttle is activated. 

As we can see in Figure 5, after an initial peak of around 2 degrees, the optimal trajectory 
(dotted lines) leads to extremely low roll angles. If the error in the estimation of m_F 
max 
is 
considered, however, the open-loop optimal controls (dashed lines) lead to considerable roll angles 
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Figure 7. Blowing valve aperture for optimal (dotted lines) and feedback controls (Scenario 1, solid lines; 
Scenario 2, dash-dot lines). 


Figure 8. Vent valve aperture for optimal (dotted lines) and feedback controls (Scenario 1, solid lines; 
Scenario 2, dash-dot lines). 

and significant deviations from the optimal trajectory in both the vehicle depth and the pitch angle. 
If we look at figures 5 and 7, we can see that this modeling error is successfully compensated by the 
closed-loop scheme by reducing the aperture of the blowing valves. Indeed, results for Scenario 1 
(Figure 5, solid lines) show an excellent performance in terms of tracking the reference trajectory. 
Figure 7, however, shows notable oscillations in the aperture of blowing valves 2 and 4. Although 
these oscillations seem to be correct in terms of optimizing the performance of the system, they may 
be undesirable from an engineering point of view. These practical considerations have been taken 
into account in Scenario 2, where these oscillations are eliminated at the expense of obtaining a 
slightly worse performance. 

If no errors are considered, then numerical results seem to indicate that the cost obtained by the 
closed-loop controls converges to the optimal (open-loop) cost as h 
. 
0. Table II shows the value 
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of the cost function of the original (OCP2) 
problem 

. 
30 
J(u)=(z(30) 
- 
75)2 
+(µ(30) 
- 
10)2 
+5 
Á2(t)dt 
0 


for different time steps h 
as well as for the standard manoeuvre and the optimal trajectory. 

Standard manoeuvre (no control) 1076:7204 
Optimal control (open loop) 141:8405 
Feedback control (h 
= 
5 
s) 143:4100 
Feedback control (h 
= 
2 
s) 142:6789 
Feedback control (h 
= 
1 
s) 142:5862 
Feedback control (h 
= 
0:5 
s) 142:4268 


Table II. Value of cost function for different time steps. 

To conclude this section and for the sake of comparison, we have solved the real-world example 
described in this section by using the same transcription method as in the case of the academic 
example in Section 3. Numerical results are similar but the convergence of the transcription method 
is slower: up to 10 times more CPU time is needed. 

5. CONCLUSIONS 
In this paper, a numerical algorithm has been proposed for solving optimal control problems in 
feedback and digital form. The algorithm is based on a suitable discretization which has been 
applied not on the original problem, but on its variational reformulation. As a consequence, the 
algorithm reduces the computation of optimal controls to the resolution of a nonlinear mathematical 
programming problem with nonlinear equality constraints at each node of a time mesh which is 
fixed at the beginning. The convergence of the algorithm and its robustness with respect to sensor 
noise have been analyzed in a simple test problem. Also the results of the algorithm have been 
compared with an standard transcription method which is applied to each node of the time mesh 
in order to compute controls in feedback form, which is of a major interest in this work. In this 
particular example, results obtained by these two approaches are quite similar. 

In a second part, we have applied the proposed algorithm to the resolution of a model which 
comes from the real-life engineering problem which consists of manoeuvring (in an emergency 
rising situation) a manned submarine by using blowing and venting of its ballast tanks. The model 
is of high order (24 ODEs), nonlinear, non-convex with respect to the state variable, and also non-
differentiable with respect to some of the state variables. Even so, the performance of the algorithm 
seems to be very satisfactory and, compared to the transcription method described in the academic 
example of Section 3, convergence is faster. 

It remains, however, some work to be done. Precisely, it would be nice to find out the sufficient 
conditions which ensure the convergence of the algorithm to the solution of the original optimal 
control problem as the step-size h 
of the time mesh goes to zero. Notice that even for open-loop 
control systems which are solved by using a transcription method it is easy to find examples 
where the discreet solution does not converge to the solution of the continuous control problem 
(see for instance [7, p. 273]). The two examples considered in this paper let us conjecture that 
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such a convergence takes place, at least, when the cost function does not depend on the control 
variable and the system satisfies the usual convexity properties and enough differentiability in the 
state variable. In addition, taking into account the existence results in [10], where the variational 
reformulation of the optimal control problem played a very important role, it is reasonable to suspect 
that the convergence of the algorithm considered in this paper extends to a larger class of nonlinear 
optimal control problems that could incorporate the submarine model analyzed in Section 4 (see 
[11]). However, this is a very challenging open problem that we plan to consider in the future. The 
present paper is just a first and small (but promising) step in this direction. 
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