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Abstract

We consider the heat equation in (0, T ) × Ω, Ω ⊂ RN , N ≥ 1, and address the

nonlinear optimal design problem which consists in finding the distribution in Ω of

two given isotropic materials which minimizes a suitable cost functional depending on

the heat flux. Both the case of a time-independent design and of the time-dependent

one are analyzed. Well-posed relaxations of the two problems are obtained by using

two well-known approaches: the homogenization method and the classical tools of non-

convex, vector, variational problems. We also implement several numerical experiments

based on these relaxed formulations to support the theoretical results. Finally, we point

out some differences and analogies of the two proposed methods.

Résumé

Dans le cadre de l’équation de la chaleur posée sur le cylindre borné (0, T ) × Ω,

Ω ⊂ RN , N ≥ 1, on adresse le problème non linéaire de la distribution optimale de deux

matériaux isotropes minimisant le flux de chaleur dans Ω. Les cas d’une distribution

indépendente et dépendente du temps sont traités simultanément. Des formulations

relaxées bien posées dans les deux cas sont obtenues en utilisant d’une part la méthode

de l’homogénéisation et d’autre part l’approche variationnelle basée sur la mesure de

Young. Enfin, plusieurs expériences numériques justifient les procédures de relaxation

et permettent de confirmer les résultats théoriques.
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1 Introduction - Problem Formulation

Optimal design problems in which the goal is to know the best way of mixing two different
materials in order to optimize some physical quantity associated with the resulting structure
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have been extensively studied during the last decades, mainly in the case where the underly-
ing state equation is elliptic. We refer the reader to [10, 16]. Among the techniques and tools
used to deal with this type of problems, homogenization and variational formulations have
played a very important role (see also [1, 2, 5, 18, 21]). More recently, optimal design prob-
lems for time-dependent designs and time-dependent state equations like the wave equation
have been also considered ([11, 12, 13]). In particular, in [11] a class of spatial-temporal
composite materials (rank-1 and rank-2 spatial-temporal laminates) were introduced. See
also [12] for some physical examples. As far as we know, the case of the heat equation has
been treated only from a more applied engineering point of view (see [22] and the references
there in).

In this work, we aim to analyze two versions of a nonlinear optimal design problem for
the heat equation. A first time-independent problem is

(P) Minimize in X : J (X ) =
1
2

∫ T

0

∫
Ω

K (x)∇u (t, x) · ∇u (t, x) dxdt

where the state variable u = u (t, x) is the solution of the system
β (x)u′ (t, x)− div (K (x)∇u (t, x)) = f (t, x) in (0, T )× Ω,

u = 0 on (0, T )× ∂Ω,

u (0, x) = u0 (x) in Ω,

(1)

with {
β (x) = X (x)β1 + (1−X (x))β2,

K (x) = X (x) k1IN + (1−X (x)) k2IN ,

and the design variable X ∈ L∞ (Ω; {0, 1}) satisfies the volume constraint∫
Ω

X (x) dx = L |Ω| for some fixed 0 < L < 1. (2)

In an attempt to treat a more general situation for time-dependent designs, we will also
examine the following time-dependent problem

(Pt) Minimize in X : Jt (X ) =
1
2

∫ T

0

∫
Ω

K (t, x)∇u (t, x) · ∇u (t, x) dxdt

where the state variable u = u (t, x) is the solution of the system
(β(t, x)u (t, x))′ − div (K (t, x)∇u (t, x)) = f(t, x) in (0, T )× Ω,

u = 0 on (0, T )× ∂Ω,

u (0, x) = u0 (x) in Ω,

(3)

with {
β (t, x) = X (t, x) β1 + (1−X (t, x))β2,

K (t, x) = X (t, x) k1IN + (1−X (t, x)) k2IN ,

and the design variable X ∈ L∞ ((0, T )× Ω; {0, 1}) satisfies the volume constraint∫
Ω

X (t, x) dx = L |Ω| for some fixed 0 < L < 1, a.e. t ∈ (0, T ). (4)

In both cases, we assume that T > 0 is a final time and Ω ⊂ RN , N ≥ 1 is a bounded
domain composed of two homogeneous, isotropic materials with mass densities ρi > 0,
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specific heats ci > 0, and thermal conductivities ki > 0, i = 1, 2 such that k1 6= k2. We
have put βi = ρici, i = 1, 2. IN denotes the identity matrix of order N , f is a heat source,
u0 the initial temperature, and u (t, x) the temperature at time t and position x. The
design variable X is a characteristic function which indicates the region occupied by the
first material (β1, k1). As a consequence, the condition (4) constraints the amount of this
material that we have at our disposal.

As for the physical meaning of the cost function J (X ), it is a measure of the heat flux
during the period of time (0, T ). Therefore, the design problem (P) consists in finding the
optimal distribution of two different materials in order to minimize the gradient part of the
energy for the heat equation. We recall that the energy at time T corresponding to the
solution of (1) is defined by

E (T ) =
1
2

∫
Ω

β (x)u2 (T, x) dx +
1
2

∫ T

0

∫
Ω

K (x)∇u (t, x) · ∇u (t, x) dxdt. (5)

The same optimal design problem, but with a cost function depending only on the tem-
perature u, was considered in [22] where the numerical simulations suggest the non-existence
of optimal designs in the class of characteristic functions. The optimal design is then found
in the form of a composite material. For the steady-state case, a counterexample on the
non-existence of solutions may be found in [1, p. 206-211]. Relaxation is the appropriate
way of dealing mathematically with this type of situations. This basically consists in re-
placing the original problem by another suitable one which has (at least) a minimizer and,
in addition, the optimal cost associated with this new problem coincides with the infimum
of the original one. The process is successfully completed whenever we are able to find out
the behavior of some minimizing sequences of the original problem from the information
codified in the minimizers of the relaxed one.

As indicated above, the homogenization method and the classical tools of non-convex
variational problems (in particular, Young measures) are, for the moment, two of the most
popular approaches in the mathematical literature to analyze this type of optimal design
problems. For solving (P) we use in a standard way the homogenization method which
seems to be very suitable to deal with time-independent designs. For the contrary, the time-
dependent case (Pt) is analyzed by using the second method (in particular, the concepts of
quasi-convexification and div-curl Young measures). This approach is very well adapted to
the new ingredient of time-dependence of designs. Our study will be not limited to theoretical
results. We shall implement several numerical experiments based on both procedures in the
two dimensional case. With the analysis of the two versions of the same problem (time-
independent and time-dependent), we stress in this scenario the complementariety of the
two approaches: homogenization for the time-independent optimal design problem, and
Young measures for the time-dependent situation.

The rest of the paper is organized as follows. In Section 2, after an overview of standard
results in Homogenization theory, we associate with problem (P) a well-posed relaxation
(RP) using this approach (see Theorem 2.4). Then, in Section 3, we use a variational
formulation and the notion of div-curl Young measure introduced recently in [20] to derive
a relaxation (RPt) of (Pt) (see Theorem 3.1). A deeper analysis of (RPt) then leads to
conjecture that the two relaxed problems (RP) and (RPt) share the property of
time-independence of the optimal local volume fraction, and that the harmonic
mean plays a prominent role in (RPt). However, in (RP) the microgeometry of the
optimal composite is time-independent, but this is not the case for (RPt) where optimal
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composites are found in the form of time-dependent first-order laminates. In addition, we
conjecture (as has been just indicated) that this optimal composite is given by the harmonic
mean of the two phases. Several numerical experiments in Section 4 support this conjecture.
Finally, we would like to emphasize that this work is but a first step towards a better
understanding of design problems for parabolic equations, and the relationship between
these two points of view. There is still a lot of work to be done. Some interesting open
questions are listed in Section 5.

2 The Homogenization Method

We obtain in this section a suitable relaxation for the optimal design problem (P). We focus
on the homogenization method. In order to make this section easier to read we first collect
some well-known results. Relaxation will follow directly from these results. Throughout
this section, we denote by Xn ∈ L∞ (Ω; {0, 1}) , n = 1, 2, · · · , a sequence of characteristic
functions and by Kn ∈MN×N a sequence of tensors of the form

Kn = Xn (x) k1IN + (1−Xn (x)) k2IN , (6)

with k1, k2 > 0.

2.1 General results on homogenization

The material of this subsection has been taken from [1, Chap. 1 and 2] and [3].
Homogenization is based on the concept of H−convergence. Precisely, a sequence of ten-

sors {Kn (x)}n∈N H−converges to the tensor K∗ ∈ L∞
(
Ω;MN×N

)
if for any f ∈ H−1 (Ω)

the sequence of solutions un ∈ H1
0 (Ω) of{

−div (Kn∇un) = f in Ω,

un = 0 on ∂Ω,

satisfies {
un ⇀ u weak in H1

0 (Ω) ,

Kn∇un ⇀ K∗∇u weak in
(
L2 (Ω)

)N
,

where u is the solution of the homogenized system{
−div (K∗∇u) = f in Ω,

u = 0 on ∂Ω.

We shall write Kn
H→ K∗ to indicate this kind of convergence.

Assume now that there exists θ ∈ L∞ (Ω; [0, 1]) and K∗ ∈ L∞
(
Ω;MN×N

)
such that{

Xn ⇀ θ weak ? in L∞ (Ω) ,

Kn
H→ K∗.

The H−limit K∗ is said to be the homogenized or effective tensor of two isotropic materials
obtained by mixing k1 and k2 in proportions θ and 1−θ, respectively, with a microstructure
defined by Xn.

As we will see later on, it is very important to identify all possible homogenized tensors
obtained by mixing two given materials with all possible micro-structures. This is the so-
called G−closure problem. Precisely, we have the following definition.
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Definition 2.1 Given θ ∈ L∞ (Ω; [0, 1]), the Gθ−closure of two isotropic materials is de-
fined as the set of tensors K∗ ∈ L∞

(
Ω;MN×N

)
such that there exist Xn ∈ L∞ (Ω; {0, 1})

and Kn of the form (6) satisfying{
Xn ⇀ θ weak ? in L∞ (Ω) ,

Kn
H→ K∗.

Fortunately, for the case of two isotropic materials, the Gθ−closure is well-known.

Theorem 2.2 Given θ ∈ L∞ (Ω; [0, 1]), the Gθ−closure of two isotropic materials ki > 0,

i = 1, 2, is the set of all symmetric matrices with eigenvalues λ1, · · · , λN satisfying

λ−θ ≤ λj ≤ λ+
θ , 1 ≤ j ≤ N,

∑N
j=1

1
λj−k1

≤ 1
λ−θ −k1

+ N−1
λ+

θ −k1
,

∑N
j=1

1
k2−λj

≤ 1
k2−λ−θ

+ N−1
k2−λ+

θ

,

where λ−θ =
(

θ
k1

+ 1−θ
k2

)−1

is the harmonic mean and λ+
θ = θk1 + (1− θ) k2 the arithmetic

mean of (k1, k2).

We conclude this section with an homogenization result for the heat equation (see [3,
Th. 7.1] for the proof). We also refer to [3, Th. 6.1] for the existence and uniqueness of
solutions for system (1).

Theorem 2.3 Let Xn ∈ L∞ (Ω; {0, 1}) and let Kn be of the form (6). Assume that{
Xn ⇀ θ weak ? in L∞ (Ω) ,

Kn
H→ K∗.

Consider the system
βn (x)u′n (t, x)− div (Kn (x)∇un (t, x)) = f (t, x) in (0, T )× Ω,

un = 0 on (0, T )× ∂Ω,

un (0, x) = u0 (x) in Ω,

where βn = Xnβ1 + (1−Xn) β2, with β1, β2 > 0, f ∈ L2 ((0, T )× Ω) and u0 ∈ L2 (Ω). Then∫ T

0

∫
Ω

Kn (x)∇un (t, x) · ∇un (t, x) dxdt →
∫ T

0

∫
Ω

K∗ (x)∇u (t, x) · ∇u (t, x) dxdt, (7)

u being the solution of the limit system
β (x)u′ (t, x)− div (K∗ (x)∇u (t, x)) = f (t, x) in (0, T )× Ω,

u = 0 on (0, T )× ∂Ω,

u (0, x) = u0 (x) in Ω,

(8)

with β = θβ1 + (1− θ) β2.
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2.2 Relaxation by the homogenization method

As indicated in the introduction, problem (P) is usually ill-posed in the sense that there are
no minimizers in the space of classical designs

CD = {X ∈ L∞ (Ω; {0, 1}) : X satisfies (4)} .

The idea of relaxation basically consists in considering a larger class of admissible designs
with the hope that the optimal design problem to be well-posed in this new class of designs.
Having this in mind and based on Theorem 2.2 we introduce the space of relaxed designs

RD =
{
(θ, K∗) ∈ L∞

(
Ω; [0, 1]×MN×N

)
: K∗ (x) ∈ Gθ(x) a.e. x ∈ Ω and θ satisfies (4)

}
,

where Gθ(x) is as in Theorem 2.2.
From Theorem 2.3 is then natural to consider, for (θ, K∗) ∈ RD, the relaxed cost

J∗ (θ, K∗) =
1
2

∫ T

0

∫
Ω

K∗ (x)∇u (t, x) · ∇u (t, x) dxdt (9)

where u is the solution of (8), and then to introduce the optimal design problem

(RP) Minimize in (θ, K∗) ∈ RD : J∗ (θ, K∗) .

We have the following main result.

Theorem 2.4 (RP) is a relaxation of (P) in the sense that

(i) there exists at least one minimizer for (RP) in the space RD,

(ii) up to a subsequence, every minimizing sequence of classical designs Xn converges, weakly
? in L∞ (Ω; [0, 1]) , to a relaxed density θ, and its associated sequence of tensors

Kn = Xnk1IN + (1−Xn) k2IN

H−converges to an effective tensor K∗ such that (θ, K∗) is a minimizer for (RP), and

(iii) conversely, every relaxed minimizer (θ, K∗) ∈ RD of (RP) is attained by a minimizing
sequence Xn of (P) in the sense that{

Xn ⇀ θ weak ? in L∞ (Ω) ,

Kn
H→ K∗.

Proof. The proof of this result follows the same lines as in the static case (see [1, p.p.
213-215]). Anyway, we include it here for completeness.

Let Xn be a minimizing sequence for (P). Since ‖Xn‖L∞(Ω) ≤ 1, there exists a subse-
quence, still denoted by Xn, such that

Xn ⇀ θ∞ weak ? in L∞ (Ω) .

Moreover, since Xn satisfies the volume constraint (4) and Xn ⇀ θ∞ weak ?,∫
Ω

θ∞ (x) dx = L |Ω| .
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On the other hand, thanks to the compactness of the sequence of tensors Kn with respect
to H−convergence, up to a subsequence, there exists K∞ ∈ L∞

(
Ω;MN×N

)
such that

Kn
H→ K∞. From Theorem 2.3 it follows that

lim
n→∞

J (Xn) = J∗ (θ∞,K∞) .

This proves that
m = inf

X
J (X ) = J∗ (θ∞,K∞) . (10)

Now let (θ, K∗) be a relaxed design. By the definition of the set Gθ, there exists Xn ∈
L∞ (Ω; {0, 1}) such that {

Xn ⇀ θ weak ? in L∞ (Ω) ,

Kn
H→ K∗.

In particular,

lim
n→∞

∫
Ω

Xn (x) dx =
∫

Ω

θ (x) dx = L |Ω| ,

but in principle each individual Xn does not satisfy the volume constraint (4). Nevertheless,
this difficulty may be overcome (see Proposition 2.1). So, assume that Xn is admissible for
(P). By using again Theorem 2.3,

J∗ (θ, K∗) = lim
n→∞

J (Xn) ≥ m.

Combining this inequality with (10) we obtain that (θ∞,K∞) is a minimizer for (RP). This
proves (i) and (ii).

Finally, to prove (iii), let (θ, K∗) ∈ RD be a minimizer for (RP). From the definition of
Gθ it follows that there exists Xn ∈ L∞ (Ω; {0, 1}) , which may be assumed to satisfy (4),
such that {

Xn ⇀ θ weak ? in L∞ (Ω)

Kn
H→ K∗,

where Kn is the sequence of tensors defined by (6). As before, we also have J (θ, K∗) =
limn→∞ J (Xn) . Obviously, this implies that Xn is minimizing for (P). �

Proposition 2.1 Let Xn ∈ L∞ (Ω; {0, 1}) be such that

(i) Xn ⇀ θ weak ? in L∞ (Ω) ,

(ii) limn→∞
∫
Ω
Xn (x) dx = L |Ω| , and

(iii) Kn
H→ K, where Kn is as in (6).

Then there exists Xn ∈ L∞ (Ω; {0, 1}) such that

(a) Xn ⇀ θ weak ? in L∞ (Ω) ,

(b)
∫
Ω
Xn (x) dx = L |Ω| for all n ∈ N, and

(c) Kn
H→ K, where Kn is as in (6) for Xn.
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Proof. From (ii) we may construct a sequence of characteristic functions Xn such that
(b) holds and, in addition, the sequence of sets

Ωn =
{
x ∈ Ω : Xn (x) 6= Xn (x)

}
satisfies

|Ωn| → 0 as n →∞. (11)

From this, it is not difficult to see that, up to a subsequence, not relabelled, we have the
convergence stated in (a).

Finally, let us denote by K the H-limit of (a subsequence of) Kn. Again, from (11) and
thanks to the locality of H-convergence (see [1, Prop. 1.4.5] or [6, Th. 13.4 (ii)]) it follows
that

K (x) = K (x) a.e. x ∈ Ω,

which completes the proof. �
Theorem 2.4 gives us a relaxation of the original optimal design problem in which we

have replaced the original state equation (1) by the relaxed one (8), this last system being
written in terms of the homogenized tensor K∗ for which we have the information that
comes from Theorem 2.2. In the one-dimensional case, we have an explicit expression for
the optimal tensor:

Remark 1 In the 1-D case, the effective coefficient K∗ is explicitly known. Indeed, from
Theorem 2.2 it follows that K∗ equals the harmonic mean, that is,

K∗ (x) =
k1k2

θ (x) k2 + (1− θ (x)) k1
, x ∈ Ω.

Hence, the relaxed problem (RP) has the simpler form

Minimize in θ : J∗(θ) =
1
2

∫ T

0

∫
Ω

k1k2

θ (x) k2 + (1− θ (x)) k1
|ux (t, x)|2 dxdt

subject to 
(θβ1 + (1− θ) β2) u′ −

(
k1k2

θk2+(1−θ)k1
ux

)
x

= f in (0, T )× Ω,

u = 0 in (0, T )× ∂Ω,

u (0, x) = u0 (x) in Ω,

θ ∈ L∞ (Ω; [0, 1]) ,
∫
Ω

θ (x) dx = L |Ω| .

Once the existence of optimal relaxed designs has been proved in Theorem 2.4, we stop
here our study based on the Homogenization method. We will go back to it in the section
devoted to the numerical resolution of the relaxed problem (RP).

3 A Young Measure Approach

We now analyze problem (Pt) from a different perspective. Precisely, we use the so-called
div-curl Young measures as a key tool. We refer the reader to [8, 15, 20] for the main
properties of this class of measures and some applications to optimal design in conductivity
and stabilization in linear elasticity.
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3.1 Div-curl Young measure associated with problem (Pt)

To begin with, we rewrite the heat equation in system (1) in divergence-free form

div(t,x) [(−β (t, x) u (t, x) ,K (t, x)∇u (t, x)) + F (t, x)] = 0 (12)

where the div(t,x) operator now includes the time variable t as the first variable and F (t, x)
is a vector field such that div(t,x)F = f . Since F will not play an important role, we put
F = 0 for simplicity throughout this section. However, all the results that follow hold true
for F (and therefore f) different from zero.

For u0 ∈ H1
0 (Ω) , an integral solution (or solution in the Young measure sense) of (12)

exists (see [9, Section 6]). Precisely, we recall that

u ∈ L∞
(
(0, T ) ;H1

0 (Ω)
)

with u′ ∈ L2 ((0, T )× Ω)

is said to be an integral solution of (12) if this equation is satisfied in H−1 ((0, T )× Ω) and
the initial and boundary conditions also hold.

Now let Xn be an admissible sequence of designs for (Pt) and let un be its corresponding
sequence of integral solutions. Consider the two sequences of vector fields{

Gn (t, x) = (− (Xn (t, x) β1 + (1−Xn (t, x))β2) un (t, x) , Kn (t, x)∇un (t, x)) ,

Hn (t, x) = (u′n (t, x) , ∇un (t, x)) .
(13)

Since both sequences Gn and Hn are uniformly bounded in
(
L2 ((0, T )× Ω)

)N+1, we may
associate with (a subsequence of) the pair (Gn,Hn) a family of parameterized measures
ν =

{
ν(t,x)

}
(t,x)∈(0,T )×Ω

. Note also that the pair (Gn,Hn) satisfies

div(t,x)Gn = 0 and curl Hn = 0.

For this reason, the measure ν is called a div-curl Young measure. We know that such class
of measures enjoy the commutation property (see [20])∫

RN+1×RN+1
ρ · λ dν(t,x)(ρ, λ) =

∫
RN+1×RN+1

ρ dν(t,x)(ρ, λ) ·
∫
RN+1×RN+1

λ dν(t,x)(ρ, λ),

(14)
which is a direct consequence of the div-curl lemma (see [21]). We also notice that by
Aubin’s lemma,

un → u strong in L2 ((0, T )× Ω) .

Due to the particular form of (Gn,Hn) , each individual ν(t,x) is supported in the union of
the two linear manifolds

Λi =
{
(ρ, λ) ∈ RN+1 × RN+1 : ρ1 = −βiu, ρ = kiλ

}
, i = 1, 2 (15)

where
ρ = (ρ1; ρ) ∈ R× RN and λ =

(
λ1;λ

)
∈ R× RN . (16)

Hence, the measure ν(t,x) may be written as

ν(t,x) = θ (t, x) ν1,(t,x) + (1− θ (t, x)) ν2,(t,x), (17)

with supp νi,(t,x) ⊂ Λi, i = 1, 2. The meaning of the manifolds Λi, i = 1, 2,, and in particular
of the dummy variables (ρ, λ), follows from the fact that the measure ν(t,x) gives the limiting
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probability distribution as n → ∞ of the values of (Gn,Hn) near the point (t, x) . See [17,
Ch. 1] for more details.

The importance of having more information on this measure is the following. Suppose
that Xn is a minimizing sequence for (Pt) with the property that |∇un|2 is equi-integrable
(note than only spatial derivatives are involved in the cost functional). Then, by the fun-
damental property of Young measures (see [17, Th. 6.2]), we may represent the limit of the
costs associated with Xn through the measure ν. Precisely,

lim
n→∞

Jt (Xn) =
1
2

∫ T

0

∫
Ω

[
k1θ (t, x)

∫
RN

∣∣λ∣∣2 dν
(2)
1,(t,x) + k2 (1− θ (t, x))

∫
RN

∣∣λ∣∣2 dν
(2)
2,(t,x)

]
dxdt

(18)
where ν

(2)
i,(t,x), i = 1, 2 stands for the projection of νi,(t,x) onto the last N−components of the

second copy of RN+1. Therefore, with each minimizing sequence of the original problem (Pt)
we associate an optimal div-curl Young measure. Our goal is to understand the structure
of this measure.

3.2 Variational reformulation and relaxation

We now proceed to the analysis of problem (Pt) in a similar fashion as in the stationary
case [20]. First step in this process is to put (Pt) into a variational setting. So, we consider
the functions

W (ρ, λ) =


k1

∣∣λ∣∣2 if (ρ, λ) ∈ Λ1,

k2

∣∣λ∣∣2 if (ρ, λ) ∈ Λ2,

+∞ else,
(19)

and

V (ρ, λ) =


1 if (ρ, λ) ∈ Λ1,

0 if (ρ, λ) ∈ Λ2,

+∞ else.
(20)

Then we associate with problem (Pt) the equivalent variational problem

(VPt) Minimize in (G, u) :
1
2

∫ T

0

∫
Ω

W
(
G (t, x) ,∇(t,x)u (t, x)

)
dxdt

subject to 

G ∈ L2
(
(0, T )× Ω; RN+1

)
, u ∈ H1 ((0, T )× Ω; R) ,

div(t,x)G = 0 in H−1 ((0, T )× Ω) ,

u|∂Ω = 0 a. e. t ∈ [0, T ] , u (0) = u0 in Ω,∫
Ω

V (G (t, x) ,∇u (t, x)) dx = L |Ω| a. e. t ∈ [0, T ] .

The crucial step in this approach is the computation of the constrained quasi-convexification
CQW of the density W because it provides us with a relaxation of (VPt). We remind that as
is usual in non-convex vector variational problems, a full relaxation of this type of problems
is obtained by replacing the original density W by its constrained quasi-convex envelope
(see [18, 20] and the references there in). So, we concentrate on the computation of this new
relaxed density.
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For fixed (θ, ρ, λ) ∈ [0, 1]×RN+1×RN+1 the constrained quasi-convex density CQW (θ, ρ, λ)
is computed by solving the problem in measures

(MPt) Minimize in ν : CQW (θ, ρ, λ) = k1θ

∫
RN

∣∣λ∣∣2 dν
(2)
1 + k2 (1− θ)

∫
RN

∣∣λ∣∣2 dν
(2)
2

subject to

ν = θν1 + (1− θ) ν2, with supp νi ⊂ Λi, i = 1, 2,

ν is a div-curl Young measure verifying the commutation property associated with (14), and

ρ =
∫

RN+1 ydν(1) (y) , λ =
∫

RN+1 zdν(2) (z) , with ν(i) the two marginals.

We notice that after solving (MPt) we plan to use the localization principle for div-curl
Young measures (see [20]) to analyze the optimal cost given by (18). In fact, for almost
everywhere (t, x) ∈ (0, T ) × Ω, we have the identification θ = θ (t, x) , ρ = G (t, x) and
λ = H (t, x) , where G and H are the weak limits of Gn and Hn, respectively.

From the expression of the first moment of ν and taking into account (15), (16) and (17),
it follows that 

ρ1 = − (θβ1 + (1− θ) β2) u,

ρ = k1θ
∫

RN ydν
(2)
1 + k2 (1− θ)

∫
RN ydν

(2)
2 ,

λ1 = θ
∫
Λ1

y1dν1 + (1− θ)
∫
Λ2

y1dν2,

λ = θ
∫

RN ydν
(2)
1 + (1− θ)

∫
RN ydν

(2)
2 .

On the other hand, the commutation condition (14) on ν implies that∫
Λ1∪Λ2

y · z dν (y, z) = ρ · λ.

Developing the left-hand side of this expression,∫
Λ1∪Λ2

y · z dν (y, z) = −θβ1uλ1
1 − (1− θ)β2uλ2

1

+k1θ

∫
RN

|y|2 dν
(2)
1 + k2 (1− θ)

∫
RN

|y|2 dν
(2)
2 .

Next, we introduce the second moments

s1 =
∫

RN

|y|2 dν
(2)
1 and s2 =

∫
RN

|y|2 dν
(2)
2 .

If we put

λ1
1 =

∫
Λ1

y1dν1, λ2
1 =

∫
Λ2

y1dν2, λ1 =
∫

RN

ydν
(2)
1 and λ2 =

∫
RN

ydν
(2)
2 ,

then we can write the conditions we have in the form

ρ = k1θλ1 + k2 (1− θ) λ2,

λ = θλ1 + (1− θ)λ2, λ1 = θλ1
1 + (1− θ)λ2

1,

k1θs1 + k2 (1− θ) s2 − ρ · λ = θβ1uλ1
1 + (1− θ)β2uλ2

1.
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The first two equations can be used to solve for λ1 and λ2, namely,

λ1 =
1

θ (k1 − k2)
(
ρ− k2λ

)
, λ2 =

1
(1− θ) (k2 − k1)

(
ρ− k1λ

)
.

The other two equations can also be used to solve for λ1
1 and λ2

1. If u 6= 0, then
λ1

1 = − 1
uθ(β1−β2)

(
θ (β2 − β1) uλ1 + ρ · λ− [k1θs1 + k2(1− θ)s2]

)
,

λ2
1 = − 1

u(1−θ)(β1−β2)

(
(1− θ) (β2 − β1) uλ1 + ρ · λ− [k1θs1 + k2(1− θ)s2]

)
.

For u = 0 there is an infinity of possibilities for λ1
1 and λ2

1, namely

λ1
1 = γ, λ2

1 =
1

(1− θ)
(λ1 − θγ)

with any γ ∈ R. With all of these notations, (MPt) reads in the simpler form:

Minimize in (s1, s2) : k1θs1 + k2 (1− θ) s2

subject to

s1 ≥
∣∣ρ− k2λ

∣∣2
θ2 (k1 − k2)

2 , s2 ≥
∣∣ρ− k1λ

∣∣2
(1− θ)2 (k2 − k1)

2

where the two inequalities appearing in the constraints are a consequence of Jensen’s in-
equality.

It is elementary to realize that the minimum of this problem is attained for

s1 =

∣∣ρ− k2λ
∣∣2

θ2 (k1 − k2)
2 and s2 =

∣∣ρ− k1λ
∣∣2

(1− θ)2 (k2 − k1)
2 ,

and thus,

CQW (θ, ρ, λ) ≥ k1

∣∣ρ− k2λ
∣∣2

θ (k1 − k2)
2 + k2

∣∣ρ− k1λ
∣∣2

(1− θ) (k2 − k1)
2

Here ρ = (ρ1, ρ) and λ = (λ1, λ).
Our next task is to see if this lower bound can be attained by a first-order div-curl

laminate (see [20] for the definition and main properties of this subclass of div-curl Young
measures). This would give us more information on the minimizing sequences of (VPt).

Note that due to the strict convexity of |·|2 , the equality in Jensen’s inequality holds if
and only if the associated measure is a Dirac mass in the corresponding components, that
is,

ν
(2)
1 = δ ρ−k2λ

θ(k1−k2)
and ν

(2)
2 = δ ρ−k1λ

(1−θ)(k2−k1)
.

Moreover, since supp νi ⊂ Λi, i = 1, 2, the projection of νi onto the last N−components of
the first copy of RN+1 has the form

ν
(1)
1 = δ

k1
ρ−k2λ

θ(k1−k2)
and ν

(1)
2 = δ

k2
ρ−k1λ

(1−θ)(k2−k1)
.

So, the optimal first-order laminate we are looking for looks like

ν = θδ“
−β1u,k1

ρ−k2λ

θ(k1−k2) ;λ
1
1,

ρ−k2λ

θ(k1−k2)

” + (1− θ) δ“
−β2u,k2

ρ−k1λ

(1−θ)(k2−k1) ;λ
2
1,

ρ−k1λ

(1−θ)(k2−k1)

”
.

(21)
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Notice that each one of these two mass points belongs to one of the two manifolds Λi,
so that the fine, one-dimensional oscillations recorded in this measure truly correspond to
the same fine, one-dimensional oscillations for a sequence of admissible X ’s. Moreover,
the information about the direction of oscillations is coming from the difference of the two
mass-points corresponding to the gradient components (including time)(

λ1
1,

ρ− k2λ

θ (k1 − k2)

)
−

(
λ2

1,
ρ− k1λ

(1− θ) (k2 − k1)

)
.

Except for a multiplicative constant, this direction is given by

((k1 − k2)θ(1− θ)(λ1
1 − λ2

1), ρ− (θk1 + (1− θ)k2)λ). (22)

Because this difference has, in general, a non-vanishing component in the time variable (the
first component), these oscillations will take place also with respect to time.

According to our previous formulae, we must choose λ1
1 and λ2

1 such that
λ1 = θλ1

1 + (1− θ)λ2
1,

−θβ1uλ1
1 − (1− θ) β2uλ2

1 = ρ · λ−
[
k1
|ρ−k2λ|2
θ(k1−k2)

2 + k2
|ρ−k1λ|2

(1−θ)(k2−k1)
2

]
,

that is, if u 6= 0, then
λ1

1 = − 1
uθ(β1−β2)

(
θ (β2 − β1) uλ1 + ρ · λ−

[
k1
|ρ−k2λ|2
θ(k1−k2)

2 + k2
|ρ−k1λ|2

(1−θ)(k2−k1)
2

])
,

λ2
1 = − 1

u(1−θ)(β1−β2)

(
(1− θ) (β2 − β1) uλ1 + ρ · λ−

[
k1
|ρ−k2λ|2
θ(k1−k2)

2 + k2
|ρ−k1λ|2

(1−θ)(k2−k1)
2

])
,

(23)
and for u = 0 there is an infinity of possibilities for λ1

1 and λ2
1, namely

λ1
1 = γ, λ2

1 =
1

(1− θ)
(λ1 − θγ)

with γ ∈ R. In this last case, the div-curl compatibility condition reduces to

ρ · λ =

[
k1

∣∣ρ− k2λ
∣∣2

θ (k1 − k2)
2 + k2

∣∣ρ− k1λ
∣∣2

(1− θ) (k2 − k1)
2

]
.

The above means that optimal measures leading to the exact value for CQW (θ, ρ, λ)
may be found in the form of first-order laminates of the kind (21). Note also that thanks
to the particular form of this measure, the first component of the vector field G, say G1, is
equal to − (θβ1 + (1− θ) β2) u. This, together with the divergence-free character of G leads
to the equation

− ((θβ1 + (1− θ) β2) u)′ + div G = 0

where we have put G =
(
G1, G

)
. Our conclusion is then that

CQW (θ, ρ, λ) = k1

∣∣ρ− k2λ
∣∣2

θ (k1 − k2)
2 + k2

∣∣ρ− k1λ
∣∣2

(1− θ) (k2 − k1)
2 .

We then find a relaxation of (VPt) in the following form:
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Theorem 3.1 Assume that the solution of system (3) has the regularity

u ∈ L2
(
0, T ;H2 (Ω)

)
(24)

and depends continuously on the initial datum in the corresponding norms. Then the vari-
ational problem

(RPt) Minimize in
(
θ, G, u

)
: Jt(θ, G, u) =

1
2

∫ T

0

∫
Ω

[
k1

∣∣G− k2∇u
∣∣2

θ (k1 − k2)
2 + k2

∣∣G− k1∇u
∣∣2

(1− θ) (k2 − k1)
2

]
dxdt

subject to

G ∈ L2
(
(0, T )× Ω; RN+1

)
, u ∈ H1 ((0, T )× Ω; R) ,

((θβ1 + (1− θ) β2) u)′ − div G = 0 in H−1 ((0, T )× Ω) ,

u|∂Ω = 0 a. e. t ∈ [0, T ] , u (0) = u0 in Ω,

θ ∈ L∞ ((0, T )× Ω; [0, 1]) ,
∫
Ω

θ (t, x) dx = L|Ω| a.e. t ∈ (0, T ).

is a relaxation of (VPt) in the sense that

(i) there exists at least one minimizer for (RPt),

(ii) the infimum of (VPt) equals the minimum of (RPt), and

(iii) the underlying Young measure associated with (RPt) (and therefore the optimal mi-
crostructure of (VPt)) can be found in the form of a first-order laminate whose direc-
tion of lamination can be given explicitly in terms of optimal solutions for (RPt).

Proof. Once the constrained quasi-convex density CQW has been computed, the proof
is standard in non-convex, vector, variational problems, but is included here for the sake of
completeness.

A first technical point we must deal with concerns the equi-integrability property of
|∇un|2 that is needed to represent the limit cost associated with a minimizing sequence of
designs through its corresponding Young measure. This problem may be easily overcome
if we assume the regularity of the solutions un as stated above. By using the Sobolev
embedding theorem this implies that |∇un|2 ∈ Lp/2 (Ω) for some p > 2 and a.e. t ∈ [0, T ] .
From this and Hölder inequality one deduces that |∇un|2 is equi-integrable.

We are now in position to describe the main steps of the proof. To begin with, we notice
that (RPt) may be written in an equivalent form as(

R̃Pt

)
Minimize in ν : J̃t (ν) =

1
2

∫ T

0

∫
Ω

(∫
RN+1×RN+1

ρ · λdν(t,x) (ρ, λ)
)

dxdt

where the competing measures are of the form (21) and

(
G (t, x) ,∇(t,x)u (t, x)

)
=

(∫
RN+1

ydν
(1)
(t,x) (y) ,

∫
RN+1

zdν
(2)
(t,x) (z)

)
with

div(t,x) G = 0, u|∂Ω = 0, u (0) = u0.
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In particular,
inf
ν

J̃t (ν) = inf
(θ,G,u)

J
(
θ, G, u

)
.

Now let Xn be a minimizing sequence for (Pt) and let (Gn,Hn) be the pair associated with
Xn as in (13). Then (see [17, Th. 6.2]), up to a subsequence still denoted by Xn,

lim
n→∞

Jt (Xn) = J̃t (ν?) , (25)

where ν? is the measure associated with (Gn,Hn) . This proves that

inf
ν

J̃t (ν) ≤ inf
X

Jt (X ) .

Conversely, if ν is admissible for
(
R̃Pt

)
, then there exists a pair (Gn,Hn) associated with

some sequence of characteristic functions Xn such that its corresponding |∇un|2 is equi-
integrable (see [8, 20] and [17, Th. 8.7] for its equivalent in the context of gradient Young
measures). We notice that, although the volume constraint is satisfied at the limit, that is,

lim
n→∞

∫
Ω

Xn (t, x) dx = L |Ω| a.e. t ∈ (0, T )

in principle, each individual Xn does not satisfy this volume constraint. But this a technical
difficulty that may be overcome as in the homogenization approach. So, we may assume
that Xn is admissible for (Pt). Thanks again to the equi-integrability of the gradients, up
to a subsequence,

lim
n→∞

Jt (Xn) = J̃t (ν)

and so
inf
ν

J̃t (ν) ≥ inf
X

Jt (X ) .

Combining this with (25), we obtain that ν? is a minimizer for
(
R̃Pt

)
and therefore so is its

associated
(
θ, G, u

)
for (RPt) . This proves (i), (ii) and the fact that the underlying Young

measure is a first-order laminate. Concerning the direction of lamination, it has also been
indicated above in (22). All of these expressions depend on the optimal solution

(
θ, G, u

)
of

(RPt) through the identification θ, ρ = G, λ = ∇u, λ1 = u′. The proof is now complete. �

Remark 2 For the case β1 = β2, the regularity (24) is satisfied if Ω is of class C1 and
u0 ∈ H1

0 (Ω) (see [7, p. 360]).

3.3 Analysis of (RPt) and Conjecture

The relaxed formulation (RPt) is rather complicated to deal with as it depends on too many
fields. We conjecture that the problem

(RPt) Minimize in θ : Jt(θ) =
1
2

∫ T

0

∫
Ω

k1k2

θk2 + (1− θ) k1
|∇u|2 dxdt

subject to

((θβ1 + (1− θ) β2) u)′ − div
(

k1k2
θk2+(1−θ)k1

∇u
)

= 0 in (0, T )× Ω,

u|∂Ω = 0 a. e. t ∈ [0, T ] , u (0) = u0 in Ω,

θ ∈ L∞ ((0, T )× Ω; [0, 1]) ,
∫
Ω

θ (t, x) dx = L|Ω| a.e. t ∈ (0, T )
(26)
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is also a relaxation for our original problem. Our intuition here is rooted in the fact that if
in the expression for CQW , we find the minimum in ρ for λ fixed, then we arrive at a linear
relationship, given by the harmonic mean, between λ and ρ

ρ =
k1k2

(1− θ)k1 + θk2
λ. (27)

In this case, some elementary algebra leads to the fact that

ρ · λ =

[
k1

∣∣ρ− k2λ
∣∣2

θ (k1 − k2)
2 + k2

∣∣ρ− k1λ
∣∣2

(1− θ) (k2 − k1)
2

]
,

so that λ1
1 − λ2

1 = 0 in (22), and, in addition, ρ− (θk1 + (1− θ)k2)λ is just a multiple of λ.
This means that the direction of lamination is orthogonal to ∇u(x, t) with no component
in the time axis. But if this is the case, then the optimal local volume fraction θ should be
independent of time θ = θ(x), though the direction of lamination is changing with time.

Conjecture 1 Minimizing sequences for the time-dependent initial optimal design problem
(Pt) can be recovered through optimal solutions of problem (RPt), where the harmonic mean
plays a fundamental role. Such optimal sequences of characteristic functions correspond to
first-order laminates with local volume fraction θ(x) (independent of time) and direction
of lamination orthogonal to ∇u(x, t).

See [19] for more on these ideas for the elliptic case. It is also important to notice that
because we have put no source term in the equation from the beginning of this section (for
the sake of simplicity), our problem is no longer a typical compliance situation (for which
in general the arithmetic mean plays an important role. See for instance [21]). In our case,
we conjecture that

G = λ−θ ∇u. (28)

In the next section, we support this surprising and non trivial conjecture with some numerical
experiments.

4 Numerical Applications

In this section, we solve numerically in the two dimensional case (N = 2) the relaxed
formulations (RP) and (RPt) obtained from the Homogenization and Young measure theory
respectively.

4.1 Numerical resolution of the relaxed problems

We first explain the numerical resolution of the relaxed problem (RP ) derived from the
homogenization method (see section 2.2).

A convenient way to minimize J∗ consists first in using a parametrization of the homog-
enized tensor K∗ ∈ Gθ in terms of its Y -transform (we refer to [1, p. 122]): the Y -transform
is the map on the set of symmetric matrices defined by

Y (K∗) = (λ+
θ IN −K∗)((λ−θ )−1K∗ − IN )−1. (29)

For N = 2, denoting by y1, y2 the eigenvalues of Y (K∗), K∗ belongs to Gθ if and only if

min(k1, k2)2 ≤ y1y2 ≤ max(k1, k2)2, y1, y2 ≥ 0. (30)
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The advantage is that the set Y (Gθ) does not depend on θ. Its inverse mapping is

K∗(Y ) = (λ+
θ IN + Y )((λ−θ )−1Y + IN )−1. (31)

We then parameterize a composite design by (θ, Y ∗) with Y ∗ = Y (A∗) for some A∗ ∈
Gθ. The interest is that the constraints on θ and Y are now uncoupled making easier the
implementation of gradient algorithm. Consequently, A∗ ∈ Gθ is parameterized by the
density θ, the two eigenvalues y1 and y2 and the angle of rotation φ such that

K∗(θ, y1, y2, φ) =
(

cos φ sinφ

− sinφ cos φ

)( λ+
θ +y1

y1/λ−θ +1
0

0 λ+
θ +y2

y2/λ−θ +1

)(
cos φ − sinφ

sinφ cos φ

)
. (32)

Finally, we compute the first derivative of the resulting function (still denoted by J∗) with
respect to θ, Y ∗ and φ and apply a gradient algorithm. The first derivative in any direction
(δθ, δY ∗, δφ) takes the following expression

∂J∗(θ, Y ∗, φ)
∂(θ, Y ∗, φ)

· (δθ, δY ∗, δφ) =
∫

Ω

∫ T

0

(
1
2
K∗

φ∇u · ∇u + K∗
φ∇u · ∇p

)
dt δφdx

+
∫

Ω

∫ T

0

(
1
2
K∗

Y ∗∇u · ∇u + K∗
Y ∗∇u · ∇p

)
dt · δY ∗dx

+
∫

Ω

∫ T

0

(
1
2
K∗

θ∇u · ∇u + K∗
θ∇u · ∇p + (β1 − β2)u′p

)
dt δθdx

(33)
where p designates the adjoint solution of the backward system

−β(θ)p′ − div (K∗(θ, Y ∗, φ)∇p) = div (K∗(θ, Y ∗, φ)∇u) in (0, T )× Ω,

p = 0 on (0, T )× ∂Ω,

p (T, x) = 0 in Ω
(34)

and K∗
θ ,K∗

Y ∗ ,K
∗
φ the derivatives of K∗ with respect to θ, Y ∗ and φ respectively. At last,

we use lagrangian multipliers to enforce the constraints θ ∈ L∞(Ω, [0, 1]),
∫
Ω

θ(x)dx = L|Ω|
and (30).

The relaxed problem (RPt) (see Theorem 3.1) derived from the second approach, al-
though less standard, may be solved in a similar way using a descent algorithm. Pre-
cisely, the minimization of J is done over θ and G while u is determined via the constraint
((θβ1 + (1 − θ)β2)u)′ − divG = 0. The first variation of Jt with respect to (θ, G) in any
direction (δθ, δG) is given by

∂Jt(θ, G, u)
∂(θ, G)

· (δθ, δG) =−
∫ T

0

∫
Ω

(β1 − β2)up′δθ dxdt +
∫

Ω

[
(β1 − β2)upδθ

]T

0

dx

+
1
2

∫ T

0

∫
Ω

[
−k1

θ2

|G− k2∇u|2

(k1 − k2)2
+

k2

(1− θ)2
|G− k1∇u|2

(k2 − k1)2

]
δθ dxdt

+
∫ T

0

∫
Ω

[
k1

θ

(G− k2∇u)
(k1 − k2)2

+
k2

1− θ

(G− k1∇u)
(k2 − k1)2

+∇p

]
· δG dxdt

(35)
where p is solution of the following problem :

(θβ1 + (1− θ)β2)p′ = k1k2
(k1−k2)2

div

(
(G−k2∇u)

θ + (G−k1∇u)
1−θ

)
in (0, T )× Ω,

p = 0 on (0, T )× ∂Ω,

p(T, x) = 0 in Ω.

(36)
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Once again, a multiplier is necessary to deal with the constraints on θ. Finally, the resolution
of problem (RPt) from Section 3.3 is standard and we refer to [14] for the details in the
context of the wave equation.

For all the variables, we use a continuous finite element approximation of second order
with respect to x on a uniform mesh and a finite difference approximation of first order with
respect to t. In the resolution of problem (RPt), since G and θ are time-space variables, a
regularization of the variable p via a viscosity term in (36) is applied (see [13] for a similar
phenomenon where the density is time-space dependent).

4.2 Numerical experiments

4.2.1 Examples with u0 6= 0 and f = 0

We consider the following simple initial data on the unit square : Ω = (0, 1)2:

u0(x) = sin(πx1) sin(πx2), x = (x1, x2) ∈ Ω (37)

and take T = 0.5, L = 1/2, (β1, k1) = (10, 0.1) and (β2, k2) = (20, 1). At last, the numerical
results presented in this section are obtained with the spatial discretisation parameter h =
1/50 and with the temporal discretisation parameter dt = h/4.

We first give the results obtained for problem (RP) derived from the Homogenization
approach. The algorithm is initialized with constant functions: we take θ ≡ L|Ω|, yi ≡
(k1 +k2)/2, i = 1, 2, and φ ≡ 0 on Ω. Figure 1 depicts the functions θ and φ, local minima of
J∗. Figure 2 depicts the corresponding function y1 and y2. We obtain J∗(θ, y1, y2, φ) ≈ 0.202
and we observe that θ is a characteristic function in L∞(Ω, {0, 1}). The corresponding
gradient part of the energy with respect to the time is given in Figure 3 highlighting the
diffusion of the heat. We also observe - this is the main drawback of gradient method -
that the result depends on the initialization. Figure 4 depicts the iso-values of θ and φ

obtained at convergence of the algorithm initialized still with θ = L|Ω|, φ = 0 but now
with y1 = min(k1, k2) and y2 = max(k1, k2). Figure 5 depicts the corresponding function y1

and y2. The value of the cost function is however similar highlighting the existence of local
minima and a low dependence of J∗ with respect to the variables.

1  

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x1

x2

!0.08

!0.06

!0.04

!0.02

0    

0.02 

0.04 

0.06 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x1

x2

Figure 1: Resolution of (RP) - L = 1/2 - T = 0.5 - (β1, β2) = (10, 20), (k1, k2) = (0.1, 1) -
Iso-values of θ (Left) and φ (Right)- J∗(θ, y1, y2, φ) ≈ 0.202.
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Figure 2: Resolution of (RP) - L = 1/2 - T = 0.5 - (β1, β2) = (10, 20), (k1, k2) = (0.1, 1) -
Iso-values of y1 (Left) and y2 (Right) corresponding to Figure 1- J∗(θ, y1, y2, φ) ≈ 0.202.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

0.4

0.5

0.6

0.7

0.8

0.9

1

t

Figure 3: L = 1/2 - T = 0.5 - (β1, β2) = (10, 20), (k1, k2) = (0.1, 1) - Gradient part of
the energy vs. t: Homogenization approach corresponding to Figure 1 (◦); Homogenization
approach corresponding to Figure 4 (?); Young measure approach corresponding to Figure
7 (�); Arithmetic mean corresponding to Figure 9 (>).
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Figure 4: Resolution of (RP) with a different initialization- L = 1/2 - T = 0.5 - (β1, β2) =
(10, 20), (k1, k2) = (0.1, 1) - Iso-values of θ (Left) and φ (Right)- J∗(θ, y1, y2, φ) ≈ 0.224.
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Figure 5: Resolution of (RP) - L = 1/2 - T = 0.5 - (β1, β2) = (10, 20), (k1, k2) = (0.1, 1) -
Iso-values of y1 (Left) and y2 (Right) corresponding to Figure 4- J∗(θ, y1, y2, φ) ≈ 0.224.
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We now solve the relaxed problem (RPt) with a special attention to the time dependence
of the optimal density θ. Expected from the theoretical part but a bit surprising, we have
obtained in all our simulations that the density θ is almost (up to the numerical approxi-
mation) time independent. Let us first give the result in the 1-D version of (37) (easier to
represent). Precisely, we take u0(x1) = sin(πx1). Initialized with the density θ(x, t) = L and
G = λ−θ ∇u in (0, T )× (0, 1), the descent algorithm provides the density depicted in Figure
6-left. The cost is Jt(θ, G, u) ≈ 0.1403. Up to the numerical approximation and boundary
phenomena, we may conclude that this optimal density does not depend on time. We high-
light that we obtain the same result for a different initialization: for instance θ(x, t) = x⊗ t

and/or G = λ+
θ ∇u. We then check that the triplet solution (θ, G, u) satisfy the relation

(28): we obtain

Rθ,G,u ≡
||G− λ−θ ∇u||L2((0,T )×Ω)

||G||L2((0,T )×Ω)

≈ 1.62× 10−4 (38)

Finally, the resolution of problem (RPt) leads to the density θ depicted in Figure 6-right,
and provides a very similar value of the cost : Jt(θ) ≈ 0.1409. These results support our
Conjecture 1. Remark that we still observe this time independence when we replace the
volume constraint (4) by the weaker one∫ T

0

∫
Ω

θ(t, x)dxdt = TL|Ω|, (39)

the Young measure analysis being independent of such a constraint.
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Figure 6: Resolution of (RPt) and (RPt) in 1D- L = 1/2 - T = 0.5 - (β1, β2) = (10, 20),
(k1, k2) = (0.1, 1) - Left : Density θ(x, t) solution of (RPt); Right : density θ(x) solution
of (RPt).

In 2D, our numerical results lead to Rθ,G,u ≈ 4.35 × 10−3 highlighting once again the
role of the harmonic mean and the validity of Conjecture 1. The results obtained from
the relaxed problem (RPt) derived from the variational approach are qualitatively different
from the ones obtained from the first approach. Once again, the density θ is initialized with
θ ≡ L on (0, T ) × Ω which does not privilege any location for the set of the first material
(β1, k1). On the other hand, the field G is initialized by G = λ−θ ∇u where u is solution of
(26). Figure 7 displays the iso-values of the (time-independent) function θ. The results seem
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here independent of the initialization of the algorithm: for instance, we get a similar result
if we take G = λ+

θ ∇u. This suggests that the function θ of Figure 7 is the global minimum:
we obtain J(θ, G, u) ≈ 0.1806 which is lower than in the previous cases (see Figures 1 and
4). The corresponding evolution with respect to time of the gradient part of the energy
is depicted on Figure 3. Moreover, we observe that θ is no more a characteristic function
which suggests that for these data, the initial design problem (Pt) is not well-posed, and
therefore justifies the whole relaxation procedure. Furthermore, if we naively consider the
arithmetic mean λ+

θ = k1θ+k2(1−θ), then we obtain the distribution of Figure 9 leading to
a greater cost equal to 0.213 (see Figure 3 for the corresponding evolution of the integrand
of the cost). We have also represented in Figure 8 one of the components of the gradient
∇u(x, t) on the slice x2 = 1/2 to emphasize the dependence of the optimal direction of
lamination with respect to time (which would be constant in the time independent version
of the problem).

Moreover, similarly to the hyperbolic case (see [13]), we observe that when the gap k2−k1

and β2−β1 between the coefficients is small enough (depending on the data of the problem),
the density θ is a characteristic function (see Figure 10 obtained for (β1, k1) = (10, 0.1) and
(β2, k2) = (10.2, 0.102)): this suggests that in this case the problem (Pt) is well-posed.

At last, on a physical point of view, the initial data being fixed, the distribution of the
two materials seems to depend mainly on the value of the ratio k2/k1 with respect to one.
Precisely, the material which have the greater diffusion coefficient (here k2) is distributed
on the center and on the corners of the unit square. The value of the ratio β2/β1 and of T

seems less preponderant. These observations are related to the exponential diffusion in time
of the heat solution u.
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Figure 7: Resolution of (RPt) - L = 1/2 - T = 0.5 - (β1, β2) = (10, 20), (k1, k2) = (0.1, 1) -
Iso-values of θ - J(θ, G, u) ≈ 0.1806.

Obviously, the optimal distribution of the two material depend on the initial condition
u0: we give the result obtained with the initial condition u0(x) = e−50(x1−0.3)2−50(x2−0.3)2

concentrated on (0.3, 0.3). We take the same values for (αi, βi), i = 1, 2 and L = 1/5. Here
again, the numerical experiments are in agreement with the theoretical part: for T = 0.5,
we obtain Jt(θ, G, u) ≈ 0.0465 and Jt(θ) ≈ 0.0469 ; in particular the optimal density from
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Figure 8: Resolution of (RPt) - Iso-values of ∂u/∂x1 for (t, x1) ∈ (0, T )×(0, 1) and x2 = 1/2
associated with Figure 7.
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Figure 9: L = 1/2 - T = 0.5 - (β1, β2) = (10, 20), (k1, k2) = (0.1, 1) - Iso-values of θ when
k1Xω + k2(1−Xω) is directly replaced by the arithmetic mean λ+

θ - Cost function ≈ 0.213.
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Figure 10: Resolution of (RPt) - L = 1/2 - T = 0.5 - (β1, β2) = (10, 10.2), (k1, k2) =
(0.1, 0.102) - Iso-values of θ - J(θ, G, u) ≈ 0.1126.

(RPt) is time independent and Rθ,G,u ≈ 2.19 × 10−3. The optimal densities for T = 0.5
and T = 5 are reported on Figure 11. As expected, the (k1, β1)-material is concentrated
around the point (0.3, 0.3). Although the variation with respect to T is low, we remark that
the optimal density for T = 5 remains strictly positive. Results from the Homogenization
approach are similar.

x1

x2

 

 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

x1

x2

 

 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

Figure 11: Resolution of (RPt) - L = 1/5 - Iso-values of the optimal density: Left: T = 0.5
leading to Jt(θ, G, u) ≈ 0.0465; Right: T = 5 leading to Jt(θ, G, u) ≈ 0.0812.

4.2.2 u0 = 0 and f 6= 0

For sake of simplicity, we have assumed in Section 3 that f ≡ 0 in (0, T )× Ω. We consider
here f(x, t) = 10 in (0, T ) × Ω, u0 ≡ 0 in Ω and evaluate whether or not Conjecture 1 still
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holds in this case. The resolution of (RPt) for T = 0.5 and T = 5 are depicted in Figure 12
and 13 respectively. Once again, in both cases, we obtain that the cost Jt(θ, G, u) is very
similar to the value of Jt(θ) corresponding to the resolution of (RPt). The resolution of (RP)
for T = 0.5 leads to Figure 14 and to a cost slightly greater. Lastly, further simulations
display the same phenomenon when f is constant in time but not in space. When f depends
on time, we obtain time dependent functions θ from (RPt) and that min (RPt) < min (RPt).
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Figure 12: Resolution of (RPt) for f = 10 and u0 = 0 - L = 1/2 - T = 0.5 - (β1, β2) =
(10, 20), (k1, k2) = (0.1, 1) - Iso-values of θ - J(θ, G, u) ≈ 0.0446.

x1

x2

 

 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

Figure 13: Resolution of (RPt) for f = 10 and u0 = 0 - L = 1/2 - T = 5 - (β1, β2) = (10, 20),
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Figure 14: Resolution of (RP) for f = 10 and u0 = 0 - L = 1/2 - T = 0.5 - (β1, β2) = (10, 20),
(k1, k2) = (0.1, 1) - Iso-values of θ - J?(θ, Y ?, φ) ≈ 0.0492.

5 Concluding remarks and open problems

In this work, we have analyzed theoretically and numerically a typical nonlinear optimal
design problem for the heat equation in two different cases: (1st) time-independent designs,
and (2nd) time-dependent designs.

A full relaxation for the first case has been obtained by using the homogenization method.
The relaxed problem has been solved by using a gradient algorithm as is usual in this context.
Writing down the necessary optimality conditions, it is not hard to show that if (θ, K?) is a
minimizer for problem (RP), then K? is a solution of the point-wise optimization problem∫ T

0

(
1
2
K?∇u · ∇u−K?∇u · ∇p

)
dt = min

K0∈Gθ(x)

∫ T

0

(
1
2
K0∇u · ∇u−K0∇u · ∇p

)
dt,

where p solves the system{
(θβ1 + (1− θ) β2) p′ + div(K?∇p) = div(K?∇u)
p|∂Ω = 0, p (T ) = 0.

A deeper analysis of these optimality conditions would be required to characterize the mi-
crogeometry of the optimal composite. This is a very interesting analytical problem that it
has not been addressed here. A preliminary situation could be considered where the source
term and the cost functional, in a steady-state framework, depend on a parameter t as well.

In the second - time-dependent - case, the relaxation procedure has been derived by using
the classical tools of non-convex, vector, variational problems: quasi-convexification and
div-curl Young measures. The proposed method directly provides the behaviour of (some)
minimizing sequences of the original problem. Precisely, this information is codified in the
Young measure associated with such a minimizing sequence. We have obtained that this
measure is a convex combination of two Dirac masses. In the context of Young measures, we
refer to this as a (time-dependent) first-order laminate. In addition, we conjecture that the
weights of these Dirac masses (which represent the local volume fraction of the two materials)
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are time-independent, i.e.. θ = θ (x) . In other words, the volume fraction θ = θ (x) only
depends on the spatial variable, but the normal vector to the direction of lamination changes
with time according to ∇u (t, x) . This is the way in which a minimizing sequence for the
original problem is recovered from a minimizer of the relaxed one. This is a surprising result,
but our numerical experiments seem to validate this conjecture. The pursuit of a rigorous
proof of such a conjecture is a main open issue. Of particular interest is also the numerical
resolution of the relaxed problem obtained from the Young measure approach. This is less
standard in this context, but seems to be very robust at least in our experiments.

Finally, it could be interesting to analyze the time-dependent case by using the homoge-
nization method. The concepts of time-dependent G−closure and time-dependent laminates
would have to be better understood ([11, 12]).
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