
Digital Object Identifier (DOI) 10.1007/s00205-008-0187-4
Arch. Rational Mech. Anal.

Optimal Internal Stabilization of the Linear
System of Elasticity

Arnaud Münch�, Pablo Pedregal�� & Francisco Periago���

Communicated by S. S. Antman

Abstract

We address the non-linear optimal design problem which consists in finding the
best position and shape of a feedback damping mechanism for the stabilization of
the linear system of elasticity. Non-existence of classical designs are related to the
over-damping phenomenon. Therefore, by means of Young measures, a relaxation
of the original problem is proposed. Due to the vector character of the elasticity
system, the relaxation is carried out through div-curl Young measures which let the
analysis be direct and the dimension independent. Finally, the relaxed problem is
solved numerically, and a penalization technique to recover quasi-optimal classical
designs from the relaxed ones is implemented in several numerical experiments.

1. Introduction

Let � be a bounded open subset of R
N with boundary � = �0 ∪�1 of class C2.

For a given function u = (u1, u2, . . . , uN ) : [0, T [ × � → R
N , depending on

time t and position x = (x1, . . . , xn) , partial derivatives with respect to t will be
denoted by ′ and derivatives with respect to x j by , j , that is,

u′
i = ∂ui

∂t
, u′′

i = ∂2ui

∂t2 and ui, j = ∂ui

∂x j
.

� A. Münch was partially supported by grants ANR-05-JC-0182-01 and ANR-07-
JC-183284.
�� P. Pedregal was supported by project MTM2004-07114 from Ministerio de Educación
y Ciencia (Spain), and PAI05-029 from JCCM (Castilla-La Mancha).
��� F. Periago was supported by projects MTM2004-07114 from Ministerio de Educación
y Ciencia (Spain) and 00675/PI/04 from Fundación Séneca (Gobierno Regional de Murcia,
Spain).



Arnaud Münch, Pablo Pedregal & Francisco Periago

We will also use the vector notation

u′ = (
u′

1, . . . , u′
N

)
, u′′ = (

u′′
1, . . . , u′′

N

)
and ∇x u = (

ui, j
)
, 1 � i, j � N .

We introduce the classical symmetric tensors of linear elasticity, namely, the linea-
rized strain tensor

ε = ε (u) = 1

2

(
∇x u + (∇x u)T

)
(1)

and the stress tensor

σ = σ (u) = (
σi j = ai jklεkl

)
(2)

where the coefficient of elasticity ai jkl ∈ W 1,∞ (�), i, j, k, l = 1, . . . , N , are such
that

ai jkl = akli j = a jikl and ai jklεi jεkl � αεi jεi j in � (3)

for some fixed α > 0.
Then, we consider the following damped system:

⎧
⎪⎪⎨

⎪⎪⎩

u′′ − ∇x · σ + a (x)Xω (x) u′ = 0 in (0, T ) × �,

u = 0 on (0, T ) × �0,

σ · n = 0 on (0, T ) × �1,

u(0, ·) = u0, u′(0, ·) = u1 in �,

(4)

where ω ⊂ � is a subset of positive Lebesgue measure, Xω is the characteristic
function of ω, ∇x · is the divergence operator considered with respect to the spatial
variable x, n = (n1, . . . , nN ) is the outward unit normal vector to �1, 0 < T � ∞,

and a = a (x) ∈ L∞ (�; R+) is a damping potential satisfying

a (x) � a0 > 0 almost everywhere x ∈ ω.

It is known (see [1,8,14]) that system (Equation 4) is well posed in the following
sense: if we introduce the space

V0 =
{

u ∈
(

H1 (�)
)N : u = 0 on �0

}

and take (u0, u1) ∈ V0 × (
L2 (�)

)N
, then there exists a unique weak solution u

of Equation (4) in the class

u ∈ C ([0, T [ ; V0) ∩ C1
(

[0, T [ ; L2 (�)N
)
.

The energy at time t of this solution is given by

E (t) = 1

2

∫

�

(∣∣u′∣∣2 + σ (u) : ε(u)
)

dx .



Optimal Internal Stabilization of the Linear System of Elasticity

where σ : ε designates the trace
∑

i, j=1,N σi jεi j . Multiplying the first vector
equation in Equation (4) by u′ and integrating by parts, one easily deduces that

dE(t)

dt
= −

∫

�

a (x) Xω(x)
∣∣u′∣∣2 dx, ∀t > 0.

Therefore, the energy is a non-increasing function of time.
Regarding the physical meaning of system (Equation 4), the dissipative term

a (x) Xω (x) u′ may be seen as a feedback damping mechanism which measures the
velocity of vibrations through the use of sensors, and acts on the system according
to these measurements by means of actuators. In this sense, Xω indicates the place
and shape of actuators.

It is then natural, and very important in practice, to analyze the question of
determining the best position and shape of sensors and actuators that minimize the
energy of the system over a time interval (see [7,11] and the references therein). This
is the main problem we address in this work. In mathematical terms, we consider
the following non-linear optimal design problem:

(P) inf
ω∈�L

J (Xω)=
∫ T

0
E (t) dt = 1

2

∫ T

0

∫

�

(∣∣u′∣∣2 + σ (u) : ε(u)
)

dx dt, (5)

where u is the solution of system (Equation 4), and for a fixed 0 < L < 1,

�L = {ω ⊂ � : |ω| = L |�|},

|ω| and |�| being the Lebesgue measure of ω and �, respectively.
The same optimization problem for the damped wave equation has been recently

considered by the authors in [17,18] where the possible non-well-posedeness cha-
racter of (P) was observed, that is, the non-existence of a minimizer in the class of
characteristic functions. Then, a full relaxation of the original problem was carried
out by means of Young measures (which are a powerful tool to understand the limit
behavior of minimizing sequences in non-linear functionals) (see [3,19] and the
references there in), and a suitable representation of divergence-free vector fields
which enables one to transform the original problem into a non-convex, vector
variational one.

The aim of this work is to extend the results in [17,18] to the case of the system
of linear elasticity. To this end, we consider the relaxed problem

(RP) inf
s∈L∞(�)

J (s) =
∫ T

0
E (t) dt (6)

where as above E (t) is the energy associated with the new system

⎧
⎪⎪⎨

⎪⎪⎩

u′′ − ∇x · σ + a (x) s (x) u′ = 0 in (0, T ) × �,

u = 0 on (0, T ) × �0,

σ · n = 0 on (0, T ) × �1,

u(0, ·) = u0, u′(0, ·) = u1 in �,

(7)
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and now the competing functions s satisfy the pointwise and volume constraints

0 � s (x) � 1 and
∫

�

s (x) dx = L |�|. (8)

Our main theoretical result reads as follows.

Theorem 1.1. Assume that the initial data of system (Equation 4) have the regula-
rity

(u0, u1) ∈
((

H2 (�)
)N ∩ V0

)
× V0. (9)

Then (R P) is a full relaxation of (P) in the sense:

(i) There are optimal solutions for (R P).
(ii) The minimum of (R P) equals the infimum of (P).

(iii) Minimizing sequences for (P) correspond to sequences converging weakly to
optimal solutions of (R P). In particular, first-order laminates with arbitrary
normals and weights given by optimal solutions of (R P) are minimizing
for (P).

The first part of this work is devoted to the proof of this relaxation result. This
is done in Section 2. As we will see in Lemma 2.3, the assumption (Equation 9)
on the initial data is a sufficient condition in order to avoid concentration of energy
phenomena and therefore this will enable us to use the Young measures theory to
compute the cost limit of a minimizing sequence for problem (P).

A few more comments on Theorem 1.1 are in order. We will show in the second
part of this work that for some values of the damping potential a there is a numerical
evidence that problem (P) is ill posed, that is, there is no minimizer in the class
of characteristic functions. This justifies the relaxation stated in points (i) and (ii)
above. In what concerns point (iii), it tells us what the microstructure of the optimal
damping designs looks like. As we will see in the proof of Theorem 1.1, this
information is codified by the optimal Young measure associated with the relaxed
problem (RP). Moreover, because of the particular form of this optimal measure
(see Equation 21), we will deduce that if Xω j is a minimizing sequence for (P),
then the associated displacements u j converge to the optimal displacement u for
the relaxed problem (RP) in a strong sense. This is our Theorem 2.1.

Apart from considering a more complicated system than the scalar wave equa-
tion, the main novelty of this work concerns the method of proving Theorem 1.1.
It is different from the one the authors used in [17,18] for the case of the wave
equation. Our approach here does not require the introduction of auxiliary poten-
tials associated with divergence-free vector fields. Instead of those, we use div-curl
Young measures as given by [20]. See also [10]. This makes the treatment much
more direct and dimension-independent.

It is also important to mention that the optimal design problem we have consi-
dered in this work could be analyzed by some other methods. In particular, by
the homogenization method (see [2] for the case of optimal design problems with
steady-state equations) and by using the Trotter–Kato theorem (see [9] for the case
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of the wave equation). The approach in this paper, although less standard, seems
to be more general in scope. In particular, it may be applied to more complicated
stabilization problems where, for instance, the damping mechanism acts not only
in the lower-order term but also in the principal part of the operator. In this situation
we talk about an optimal design problem or a bi-design situation. We refer to [15]
for a specific example under the 1D wave equation. Our approach can also accom-
modate other more general types of cost functionals depending on derivatives of
the state, and thus it is not limited to dealing with the energy as an optimization
criterium.

In a second part, we address the numerical resolution of the relaxed problem
(RP) by using a first-order gradient descent method. We present several experiments
which highlight the influence of the over-damping phenomenon on the nature of
(P). For small values of the damping potential a, we find that the problem (P) is
well-posed. On the contrary, when a is large enough, the optimal density is no longer
in L∞(�, {0, 1}) but in L∞(�, [0, 1]). The influence of the Lamé coefficients (in
the isotropic case) on the optimal shape and position of the optimal damping set is
also briefly analyzed. Finally, we illustrate point (iii) of Theorem 1.1 by extracting
for the optimal density a minimizing sequence of characteristic functions.

2. Proof of the relaxation theorem

As we mentioned in the Introduction, our approach to prove Theorem 1.1 is
based on the use of a class of Young measures associated with a pair of vector
fields, the first one being divergence-free and the second one curl-free. For this
reason, these measures are called div-curl Young measures. In order to make the
paper easier to read, we first collect the main properties of these measures that we
will need later on. For a proof of this we refer the reader to [10,20].

2.1. Preliminary on div-curl Young measures

Given a bounded C2 domain � ⊂ R
N and a sequence of pairs of vector fields(

F j , G j
)

such that

F j : � → Mm×N, G j : � → Mm×N

are uniformly bounded in L2
(
�;Mm×N

)
, it is well-known [19, Th. 6.2, p. 97]

that we may associate with (a subsequence of) such a pair a family of probability
measures ν = {νx }x∈� with the main property that if the sequence of functions{
φ

(
x, F j (x) , G j (x)

)}
weakly converges in L1 (�) for some Carathéodory inte-

grand φ, then the weak limit is given by

φ (x) =
∫

Mm×N ×Mm×N
φ (x, A, B) dνx (A, B).

If, in addition, the pair
(
F j , G j

)
satisfies

∇x · F j = 0 and curl G j = 0, (10)
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in a distributional sense, then the measure ν = {νx }x∈� is called the div-curl Young
measure associated with

(
F j , G j

)
.

Besides the general properties of Young measures, div-curl Young measures
enjoy the following fundamental property which is an immediate consequence of
the well-known div-curl lemma.

Lemma 2.1 If ν = {νx }x∈� is a div-curl Young measure, then for almost every
where x ∈ �,

∫

Mm×N ×Mm×N
ABT dνx (A, B)=

∫

Mm×N
Adν(1)

x (A)

∫

Mm×N
BT dν(2)

x (B)

(11)

where ν
(i)
x , i = 1, 2, are the marginals of νx on the two Cartesian factors, respec-

tively.

An important subclass of this family of measures is the class of the so-called
div-curl laminates. These are to div-curl Young measures what laminates are to
gradient Young measures, and can be constructed as follows.

Lemma 2.2 Suppose that Ai , Bi , i = 1, 2, are four m × N matrices such that

(A2 − A1)
(

BT
2 − BT

1

)
= 0. (12)

Then the measure

ν = sδ(A1,B1) + (1 − s) δ(A2,B2) (13)

is a div-curl Young measure for all 0 � s � 1.

Notice that hypothesis (Equation 12) above is a sufficient condition in order for
the Young measure (Equation 13) to satisfy the div-curl condition (Equation 11).
For a concrete (very important in the context of optimal design in conductivity)
example of div-curl laminate and its associated sequences

(
F j , G j

)
, we refer to

[20].

2.2. Two preliminary key results

In the sequel we will have to deal with the class of homogeneous div-curl Young
measures ν of the form

ν = sδ((
M1+C, −σ

(
M

))
,M

) + (1 − s) δ((
M1, −σ

(
M

))
,M

), (14)

with 0 � s � 1, C ∈ R
N and M = (

M1, M
) ∈ MN×(N+1). The term M1 stands

for the first column of M and M ∈ MN×N is the rest of the matrix. Moreover,
σ

(
M

)
stands for the N × N matrix with components

(
σ

(
M

))
i j = ai jkl Mkl, with

ai jkl the coefficients given in Equation (3).
The following result is essential to avoid undesirable phenomena of concentra-

tion of energy.
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Lemma 2.3 Suppose that the initial data of system (Equation 4) have the regularity
(Equation 9) and that for almost each (t, x) ∈ (0, T )×� we have a div-curl Young
measure ν of the form (Equation 14) with s = s (x) satisfying (Equation 8), C = au
and M = (

M1, M
) = (u′,∇x u), where u is the solution of Equation (7) associated

with s. Assume also that there exists a divergence-free vector field

F ∈ L2
(
(0, T ) × �;MN×(N+1)

)

such that

F (t, x) =
∫

MN×(N+1)

Adν
(1)
(t,x) (A).

Then there exists a sequence Xω j , which is admissible for (P), and such that if
u j is the corresponding solution of Equation (4), then

G j =
(

u′
j ,∇x u j

)
→ (u′,∇x u) strong in

(
L2 ((0, T ) × �)

)N
.

Proof. Due to the particular form of the measure ν (specifically, ν is div-curl Young
measure), it is known (see for instance [10,12,20]) that there exist two vector fields(
H j , R j

)
such that

∇(t,x) · H j → 0 in H−1, R j = ∇(t,x)v j ,

with v j satisfying the initial and boundary conditions of system (Equation 4), and
whose associated Young measure is ν. Note that now ∇(t,x)· is the divergence
operator with respect to t and x. Moreover, both

∥
∥H j

∥
∥2 and

∥
∥R j

∥
∥2

,

where ‖·‖ stands for the usual norm in the space of matrices MN×(N+1), are equi-
integrable. What is at stake here is the fact that by modifying the pair (H j , R j ) a
bit, we can get a new pair denoted in the sequel by (F j , G j ) admissible for (P) so
that the underlying Young measure as well as the equi-integrability are preserved.

Since ν is of the form (Equation 14) and
(
H j , R j

)
is its associated sequence,

for j large, the pair
(
H j , R j

)
is closer to �1,C than �0 in proportion s (x), where

�1,C =
{
(A, B) ∈ MN×(N+1) × MN×(N+1) : A1 = B1 + C, A = −σ

(
B

)}

and

�0 =
{
(A, B) ∈ MN×(N+1) × MN×(N+1) : A1 = B1, A = −σ

(
B

)}
.

Let us denote by Xω j the characteristic function indicating this property, that is,

Xω j (x) =
⎧
⎨

⎩

1 if dist
((

H j , R j
)
,�1,C

)
< dist

((
H j , R j

)
,�0

)

0 else.
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We claim that this sequence of characteristic functions do not depend on time (as it
has been indicated in its definition) even though the fields

(
H j , R j

)
do. This is a

direct consequence of the explicit form assumed on the underlying Young measure
in Equation (14). Indeed, it corresponds to a (div-curl) laminate and the direction
of lamination should be perpendicular to all rows of the differences for the first
Cartesian factor (the one corresponding to the div-free constraint)

(
M1 + C, − σ

(
M

)) − (
M1, − σ

(
M

)) = (C, 0).

Notice that the second Cartesian factor does not provide any information on the
direction of lamination since this component is the same on the two Dirac masses.
The component corresponding to C above is the time direction. So perpendicular
directions should have a vanishing time component and are not restricted otherwise.
This, in turn, implies that laminates are “vertical” (time axis) with any normal
in space. In this way, the essential dependence on time of the sequence Xω j is
incompatible with this direction of lamination.

Obviously,

lim
j→∞

∫

�

Xω j (x) dx = L |�| .

We aim to modify the pair
(
H j , R j

)
in a suitable way to obtain a new pair

(
F j , G j

)
,

admissible for (P), whose associated measure is the same ν. To this end, we modify
the sequence Xω j in a set whose measure converges to zero as j → ∞ and satisfying

∫

�

Xω j (x) dx = L |�| .

This new sequence of characteristic functions (not relabelled) is admissible for the
original optimal design problem and satisfies

lim
j→∞

∫ T

0

∫

�

[∣∣
∣H1

j −
(
v′

j + a (x)Xω j (x) v j

)∣∣
∣
2 + ∥∥H j + σ

(
v j

)∥∥2
]

dx dt = 0,

(15)

where as before H1
j denotes the first column of H j and H j is the N × N matrix

composed of the remaining columns.
Let u j be the solution of Equation (4) associated with the admissible sequence

Xω j and consider the pair

F j =
(

u′
j + a (x) Xω j (x) u j ,−σ j

)
and G j =

(
u′

j ,∇x u j

)
.

We claim that the measure associated with this new pair is also ν. To prove
this, consider the sequence w j = u j − v j . It is easy to see that w j solves the
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non-homogeneous system
⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

w′′
j − ∇x · σ

(
w j

) + a(x)Xω j (x)w′
j =

∇(t,x) ·
(

H1
j −

(
v′

j + a(x)Xω j (x)v j

)
, H j + σ

(
v j

))
in (0, T ) × �,

w j = 0 on (0, T ) × �0,

σ · n = 0 on (0, T ) × �1,

w j (0, ·) = 0, w′
j (0, ·) = 0 in �.

Moreover, from Equation (15), it follows that

w j ⇀ 0 weakly in
(

H1 ((0, T ) × �)
)N

. (16)

On the other hand, since u j is a solution of Equation (4),

−∇x · σ
(
w j

) = −u′′
j − a (x)Xω j (x) u′

j + ∇x · σ
(
v j

)
.

Multiplying this equation by w j and integrating by parts, as w j satisfies zero initial
and boundary conditions, we obtain the following:

∫ T

0

∫

�

aklmnεmn
(
w j

)
εkl

(
w j

)
dx dt

= −
∫ T

0

∫

�

u′′
jw j dx dt −

∫ T

0

∫

�

a (x) Xω j (x) u′
jw j dx dt

−
∫ T

0

∫

�

aklmnεmn
(
v j

)
εkl

(
w j

)
dx dt.

From the assumptions on the initial data, it can be proved (see [1,14]) that

u′
j ∈ L∞ ((0, T ) ; V0), u′′

j ∈ L∞ (
(0, T ) ; (L2 (�))N

)

and both sequences are uniformly bounded with respect to j. This, together with the
weak convergence (Equation 16), implies that the two first terms in the right-hand
side above converge to zero. Moreover, since the measure associated with R j =
∇(t,x)v j is a delta, εmn

(
v j

)
is strongly convergent in L2. Therefore, the third term

also converges to zero. Finally, by using the coercivity condition (Equation 3) and
the second Korn inequality [5, p. 192], we get the convergence

∫ T

0

∫

�

∥
∥∇xw j

∥
∥2 dx dt → 0. (17)

As for derivatives with respect to time, from the identity
∣
∣∣w′

j

∣
∣∣
2 =

(
w′

j · w j

)′ − w′′
j · w j

and by using similar arguments,
∫ T

0

∫

�

∣∣∣w′
j

∣∣∣
2

dx dt → 0. (18)
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From Equations (17) and (18) it follows (see [19, p. 101]) that the sequences G j and

R j share the same associated measure. Moreover, since
∥∥R j

∥∥2 is equi-integrable,

so is
∥
∥G j

∥
∥2.

The conclusion is then a consequence of the fact that the projection onto the
second Cartesian factor of the measure in Equation (14) is a delta since both Dirac
masses have the same second Cartesian factor. It is well known (see [19, Prop.
6.12, p. 11]) that this fact, together with the equiintegrability, implies the strong
convergence claimed. Notice that this second Cartesian factor corresponds to the
gradient variable (including time). ��
Let us now prove that weak-� convergence in L∞ (�) of a sequence of minimizing
sequences for problem (P) implies strong convergence of the associated displace-
ment fields.

Theorem 2.1. Suppose that the initial condition (u0, u1) have the regularity (Equa-
tion 9). Suppose that Xω j is a minimizing sequence for the optimization problem
(P) and let u j be the associated sequence of displacement fields. If

Xω j ⇀ s weak- � in L∞ (�),

then

u j → u strong in
(

H1 ((0, T ) × �)
)N

,

where u is the corresponding solution of system (Equation 7).

Proof. Let Xω j be a minimizing sequence for problem (P). We start by rewriting
the system of PDE’s in Equation (4) as

∇(t,x) ·
(

u′
j + a (x) Xω j (x) u j ,−σ

)
= 0,

where u j is the sequence of associated displacements,
(

u′
j + a (x)Xω j (x) u j ,−σ

)

is a sequence of matrices of order N × (N + 1) which have the term u′
j + a (x)

Xω j (x) u j in the first column, and the divergence operator ∇(t,x)· now includes
the time variable (as the first variable) too.

We introduce the two sequences of vector fields

F j =
(

u′
j + a (x) Xω j (x) u j ,−σ j

)
and G j =

(
u′

j ,∇x u j

)
,

so that the pair
(
F j , G j

)
is div-curl-free (∇(t,x) · F j = 0 and curl G j = 0). As

in the static case (see [2,5] ), it can be proved that the vector fields F j and G j

are uniformly bounded in L2, and therefore we may associate with this pair (rather
with a subsequence of the pair) a div-curl Young measure ν = {

ν(t,x)

}
(t,x)∈(0,T )×�

.
Since Xω j (x) only takes on two values, ν is supported in the union of the two

manifolds �0 and �1,C introduced in Lemma 2.3. In this case, the vector C ∈ R
N

plays the role of a(x)u and as far as derivatives are concerned is like a constant.
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Let ν(2) designate the projection of ν onto the second copy of MN×(N+1) and
let S = S (t, x) be the matrix in MN×N given by

S (t, x) =
∫

MN×(N+1)

[
diag (B1) diag (B1) + σ

(
B

)
B

T
]

dν
(2)
(t,x) (B)

where diag(B1) stands for a N × N diagonal matrix with the vector B1 in the
principal diagonal. Note also that B1 plays the role of u′ and B ≡ ∇x u.

Due to the symmetry properties (Equation 3) and the basic property of Young
measures (the weak lower semicontinuity [19], Th. 6.11, p. 110), it is elementary
to check that

lim
j→∞ J

(
Xω j

)
� 1

2

∫ T

0

∫

�

tr S (t, x) dx dt.

Since the trace is a linear operator,

tr (S) =
∫

MN×(N+1)

[
|B1|2 + σ

(
B

) : ε
(
B

)]
dν(2) (B),

where ε
(
B

) = 1
2

(
B + B

T
)

. By Jensen’s inequality,

tr (S) � |M1|2 + σ
(
M

) : ε
(
M

)
(19)

with M the first moment of ν(2).
If we can show that the right-hand side of (Equation 19) can be obtained by a

div-curl laminate, then that value will be optimal and the underlying state law will
be encoded in such a laminate. In addition, we could apply Lemma 2.3. But, this is
elementary to check. It suffices to take into account that due to the strict convexity
this minimum value can only be achieved when

ν(2) = δM (20)

and hence

ν = sδ((
M1+C, −σ

(
M

))
,M

) + (1 − s) δ((
M1, −σ

(
M

))
,M

), (21)

with 0 � s � 1, is our desired div-curl laminate. Note that the difference of the
two pair of matrices is ((C, 0) , 0) which satisfies (Equation 12).

Once we know that the minimum value |M1|2 + σ
(
M

) : ε
(
M

)
is eligible, it

becomes the cost for the relaxed problem (R P), and the optimal ν is given as the
convex combination of these two deltas, one in each manifold. Conclude now by
Lemma 2.3.

We have thus shown that given an arbitrary subsequence of the full sequence
Xω j , we can always find a further subsequence so that we have the claimed strong

convergence in
(
H1 ((0, T ) × �)

)N
for the corresponding solutions. Because of

uniqueness of the limit, the full sequence will converge strongly. This completes
the proof. ��
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2.3. Proof of Theorem 1.1

We now have all the necessary ingredients to prove Theorem 1.1. The proof is
standard in non-convex optimal control problems (see for instance [19,20]) and is
essentially contained in the proof of Theorem 2.1, but is included here for com-
pleteness to stress how this approach can be used to deal with more general cost
functionals.

Proof of Theorem 1.1. To begin with, we put the original problem into the setting
of calculus of variations. So, for (u, A, B) ∈ R

N × MN×(N+1) × MN×(N+1), we
introduce the functions

W (u, A, B) =
⎧
⎨

⎩

|B1|2 + σ
(
B

) : ε
(
B

)
if (A, B) ∈ �0 ∪ �1,au

+∞ else

and

V (u, A, B) =
⎧
⎨

⎩

1 if (A, B) ∈ �1,au
0 if (A, B) ∈ �0\�1,au
+∞ else.

Then it is not hard to check that the original problem is equivalent to

Minimize in (u, F) : 1

2

∫ T

0

∫

�

W
(
u (t, x) , F (t, x) ,∇(t,x)u (t, x)

)
dx dt

subject to

F ∈ L2
(
(0, T ) × �;MN×(N+1)

)
, ∇(t,x) · F = 0,

u ∈ H1
(
(0, T ) × �; R

N
)

satisfies the same initial and boundary conditions as in
system (Equation 4), and

∫

�

V
(
u (t, x) , F (t, x) ,∇(t,x)u (t, x)

)
dx dt = L |�| for all t � 0.

Relaxation for non-convex functionals like our case is based on the computation of
the constrained quasi-convexification of W . For fixed (u, A, B, s), it is defined as

C QW (u, A, B, s) = min
ν

∫

MN×(N+1)×MN×(N+1)

W (u, R, S) dν (R, S)

where ν is a div-curl Young measure of the form

ν = sν1 + (1 − s) ν0,

with 0 � s � 1 and

supp ν0 ⊂ �0, supp ν1 ⊂ �1,au and (A, B) the first moment of ν.



Optimal Internal Stabilization of the Linear System of Elasticity

The relaxation of the original problem is then given by

Minimize in (s, u, F) : 1

2

∫ T

0

∫

�

C QW
(
u (t, x) , F (t, x),∇(t,x)u (t, x)

)
dx dt

subject to

⎧
⎨

⎩

0 � s (x) � 1,
∫
�

s (x) dx = L |�|

(F, u) are as before.

These computations have been carried out in the proof of Theorem 2.1 where we
have found that the optimal measure furnishing the value of C QW (u, A, B, s) is
a first-order laminate of the form (Equation 14). From this, we have also deduced
that the relaxed problem in terms of measures

Minimize in ν the cost function J (ν)

where

J (ν) = 1

2

∫ T

0

∫

�

∫

MN×(N+1)

[
|B1|2 + σ

(
B

) : ε
(
B

)]
dν

(2)
(t,x) (B) dx dt

ν being of the form (Equation 14), is equivalent to (R P). In particular,

inf
ν

J (ν) = inf
s

J (s).

Now let Xω j be a minimizing sequence for (P). Then, as is well-known [19,
Th. 6.11, p. 110],

lim
j→∞ J

(
Xω j

)
� J (ν), (22)

where ν is the measure associated with Xω j as in Theorem 2.1. This proves that

inf
ν

J (ν) � inf
Xω

J (Xω).

Conversely, if ν is an admissible measure of the form (Equation 14), then by
Lemma 2.3 there exists an admissible pair

(
F j , G j

)
associated with some sequence

of admissible characteristic functions Xω j such that
∥∥G j

∥∥2 is equi-integrable.
Thanks to this equi-integrability, we have

lim
j→∞ J

(
Xω j

) = J (ν),

and this implies that

inf
ν

J (ν) � inf
Xω

J (Xω).
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This proves (ii). For the proof of (i), take a minimizing sequence Xω j for (P) and
let ν be its associated Young measure. Again by Lemma 2.3, we may find another
sequence, say Xω j , such that its associated

∥∥∇(t,x)u j
∥∥2 is equi-integrable. Hence,

lim
j→∞ J

(
Xω j

) = J (ν),

but since Xω j is minimizing,

lim
j→∞ J

(
Xω j

)
� lim

j→∞ J
(
Xω j

) = J (ν).

From Equation (22) it follows that

lim
j→∞ J

(
Xω j

) = J (ν).

This proves that ν is a minimizer for the problem in measures; therefore its asso-
ciated function s is a minimizer for (RP).

Finally, note that the optimal measure associated with an optimal s of the relaxed
problem is a first-order laminate whose projection on the second Cartesian factor
is a delta in ∇(t,x)u. This implies that the normal to this optimal laminates is
independent of time and can take any direction in space.

Note that when we talk about normals, because our div-curl Young measures
also incorporate time as a variable, we mean normals in space-time. It turns out
that, as a result of optimization according to our computations above, such normals
are indeed “plain” normals in space (having a vanishing time component) whose
direction (in space) is not restricted in any way because the projection on space
of the two-mass points for optimal measures is the same, and hence the difference
vanishes. This implies no restriction on normals. This has also been emphasized
before. ��
Remark 1. It is also important to note that given an optimal relaxed design s, if
Xω j is an admissible sequence of characteristics functions such that:

(i) Xω j ⇀ s weak-� in L∞ (�) , and,

(ii) the associated
∥∥∇(t,x)u j

∥∥2 are equi-integrable,

then Xω j is a minimizing sequence for (P). This is again a consequence of the fact
that the optimal measure projects a delta located at ∇(t,x)u on its second Cartesian
factor. The condition on the equi-integrability of ||∇(t,x)u j ||2 may be obtained by
assuming enough regularity on the initial data.

Remark 2. We also point out that the result we have obtained may be extended to
a non-homogeneous system of the type:

⎧
⎪⎪⎨

⎪⎪⎩

u′′ − ∇x · σ + a (x) Xω (x) u′ = f in (0, T ) × �,

u = 0 on (0, T ) × �0,

σ · n = 0 on (0, T ) × �1,

u(0, ·) = u0, u′(0, ·) = u1 in �,

(23)

for any f ∈ L∞((0, T ); L2(�)N ).
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3. Numerical analysis of problems (P) and (RP)

In this second part, we address the problem of computing numerically the
optimal density for (RP). Based on this optimal relaxed density, we propose a
penalization technique to recover quasi-optimal classical designs for (P). We first
describe an algorithm of minimization and then present some numerical experi-
ments.

3.1. Algorithm of minimization

We briefly discuss the resolution of the relaxed problem (RP) using a gradient
descent method. In this respect, we compute the first variation of the cost function
J with respect to s. For any η ∈ R

+, η << 1, and any s1 ∈ L∞(�), we associate
to the perturbation sη = s + ηs1 of s the derivative of J with respect to s in the
direction s1 as follows:

∂ J (s)

∂s
· s1 = lim

η→0

J (s + ηs1) − J (s)

η
. (24)

Following the proof of [18] in the similar context of the wave equation, we
obtain the following result.

Theorem 3.1. If (u0, u1) ∈
((

H2 (�)
)N ∩ V0

)
× V0, then the derivative of J with

respect to s in any direction s1 exists and takes the form

∂ J (s)

∂s
· s1 =

∫

�

a(x)s1(x)

∫ T

0
u′(t, x) · p(t, x) dt dx (25)

where u is the solution of Equation (7) and p is the solution in C([0, T ];
(H1

0 (�))N ) ∩ C1([0, T ]; (L2(�))N ) of the adjoint problem
⎧
⎪⎪⎨

⎪⎪⎩

p′′ − ∇x · σ ( p) − a(x)s(x) p′ = u′′ + ∇x · σ (u), in (0, T ) × �,

p = 0, on (0, T ) × �0,

p · n = 0, on (0, T ) × �1,

p(T, ·) = 0, p′(T, ·) = u′(T, ·) in �.

(26)

Notice that the integral (Equation 25) is well defined, that is u′· p ∈ C([0, T ], L1(�))

since from the regularity assumed on (u0, u1), we have u′′ +∇x ·σ (u) ∈ C([0, T ];
(L2(�))N ) and hence p ∈ C([0, T ]; (L2(�))N ).

In order to take into account the volume constraint on s, we introduce the
Lagrange multiplier γ ∈ R and the functional

Jγ (s) = J (s) + γ ||s||L1(�). (27)

By using Theorem 3.1, we obtain that the derivative of Jγ is

∂ Jγ (s)

∂s
· s1 =

∫

�

s1(x)

(
a(x)

∫ T

0
u′(t, x) · p(t, x)dt + γ

)
dx (28)
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which permits to define the following descent direction:

s1(x) = −
(

a(x)

∫ T

0
u′(t, x) · p(t, x)dt + γ

)
, ∀x ∈ �. (29)

Consequently, for any function η ∈ L∞(�, R
+) with ||η||L∞(�) small enough, we

have Jγ (s + ηs1) � Jγ (s). The multiplier γ is then determined so that, for any
function η ∈ L∞(�, R

+) and η �= 0, ||s + ηs1||L1(�) = L|�| leading to

γ = (
∫
�

s(x)dx − L|�|) − ∫
�

η(x)a(x)
∫ T

0 u′(t, x) · p(t, x) dtdx
∫
�

η(x)dx
. (30)

At last, the function η is chosen so that s(x) + η(x)s1(x) ∈ [0, 1], for all x ∈ �.
A simple and efficient choice consists in taking η(x) = εs(x)(1 − s(x)) for all
x ∈ � with ε a small real positive.

Consequently, the descent algorithm to solve numerically the relaxed problem
(R P) may be structured as follows: let � ⊂ R

N , (u0, u1) ∈ ((H2(�))N ∩V0)×V0,
L ∈ (0, 1), T > 0, and ε < 1, ε1 << 1 be given:

• Initialization of the density function s0 ∈ L∞(�; ]0, 1[);
• For k � 0, iteration until convergence (that is, |J (sk+1) − J (sk)| � ε1|J (s0)|)

as follows:
– Computation of the solution usk of Equation (7) and then the solution psk

of Equation (26), both corresponding to s = sk .
– Computation of the descent direction sk

1 defined by Equation (29) where the
multiplier γ k is defined by Equation (30).

– Update the density function in �:

sk+1 = sk + εsk(1 − sk)sk
1 (31)

with ε ∈ R
+ small enough in order to ensure the decrease of the cost function

and sk+1 ∈ L∞(�, [0, 1]).

3.2. Numerical experiments

In this section, we present some numerical simulations for N = 2 and the unit
square � = (0, 1)2. Moreover, for simplicity, we consider the case �0 = ∂� and
assume that � is composed of an isotropic homogeneous material for which

ai jkl = λδi jδkl + µ
(
δikδ jl + δilδ jk

)
.

λ > 0 and µ > 0 are the Lamé coefficients and δ designates the Kronecker symbol.
The stress tensor becomes simply: σ (u) = λtr(∇x · u)IN×N + 2µε(u).

Systems (Equation 7) and (Equation 26) are solved in space using a C0-finite
element method with mass lumping (we refer to [6,16]). Precisely, introducing a
triangulation Th of � (h = maxT ∈Th |T |), we approximate L2(�) and H1(�) by
the following finite-dimensional spaces Vh = {vh |vh ∈ C0(�), vh|T ∈ P1 ∀T ∈
Th} where P1 designates the space of the polynomials of degree � 1. The time
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discretization is performed in a standard way using centered finite differences of
order two. At last, without loss of generality, we consider a constant damping
function a(x) = aX�(x) in � since the dependence in x is contained in the
density s.

In the sequel, we treat the following simple conditions in ((H2(�))N ∩V0)×V0,
sufficient to illustrate the complexity of the problem:

u0 = (sin(πx1) sin(πx2), sin(πx1) sin(πx2)), u1 = (0, 0). (32)

Results are obtained with h = 10−2, ε1 = 10−5, L = 10−1, T = 1, s0(x) = L on
� and ε = 10−2 (see the algorithm).

We highlight that the gradient algorithm may lead to local minima of J . For
this reason, we consider constant initial density s0 as indicated above which permit
to privilege no location for ω.

3.2.1. Influence of the damping constant value a Similarly to the wave equation
case considered in [17,18], numerical simulations exhibit a bifurcation phenome-
non with respect to the value of the damping constant a. When this value is small
enough, say a < a�(�, L , λ, µ, u0, u1), depending on the data, the optimal density
is always a characteristic function, which suggests that the original problem (P)

is well-posed. On the other hand, when the critical value a� is reached, it appears
that the optimal density takes values strictly in (0, 1). This suggests that (P) is no
more well-posed and fully justifies the introduction of the relaxed problem (R P).
For (λ, µ) = (1/2, 1), Fig. 1 depicts the iso-values of the optimal density sopt—
obtained at the convergence of the algorithm—for several values of a: for a = 5,
sopt ∈ {0, 1}, while for example for a = 10, sopt ∈ [0, 1].

The well-posedness when a is small may be explained as follows: from (Equa-
tion 25), one may write that (we introduce the notation J (s, a) = J (s(a)))

J (s + ηs1, a)= J (s, a)+η

∫

�

a(x)s1(x)

∫ T

0
u(s)

′ · p(s) dt dx + O(η2a)

(33)

such that for the conservative case s = 0 and a(x) = aX�(x),

J (ηs1, a) = J (0, a) + ηa
∫

�

s1(x)

∫ T

0
ut(0) · p(0) dt dx + O(η2a)

= J (s1, 0) + ηa
∫

�

s1(x)

∫ T

0
u(0)

′ · p(0) dt dx + O(η2a)

(34)

where u(0), p(0) are the solutions of Equations (7) and (26) in the conservative case.
Then, writing that J (ηs1, a) = J (s1, ηa), one obtains

J (s1, ηa)= J (s1, 0)+ηa
∫

�

s1(x)

∫ T

0
u(0)

′ · p(0) dt dx + O(η2a).

(35)
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Fig. 1. T = 1, (λ, µ) = (1/2, 1), a(x) = aX�(x)—iso-value of the optimal density sopt
on � for a = 5 (top left), a = 10 (top right), a = 25 (bottom left) and a = 50 (bottom right)

Forη small, the last term may be neglected. Therefore, the optimal density associated
with the damping coefficient ηa (small) is related to the minima in � of the negative
function x → ∫ T

0 u(0)
′ · p(0)dt . For the initial condition (Equation 32), this func-

tion is strictly convex (see Fig. 2) and the minimum is reaches at point (1/2, 1/2).
We conclude that the optimal distribution s1 which minimizes the second term in
(Equation 35) is a characteristic function centered on (1/2, 1/2). The conclusion
is the same if a remains small: for a = 5, Fig. 1 top left depicts the iso-value of the
density sopt for a = 5 (Fig. 3).

On the other hand, when a is large enough, the last term in (Equation 35)
can not be neglected. In this case, the ill-posedness is related to the over-damping
phenomenon: when minω a(x) goes to infinity, the damping term a(x)Xω acts as
penalization term and enforces the solution u to be constant in time in ω: at the
limit, there is no more dissipation in ω (and so in �) and the energy is constant.
In order to avoid this phenomenon (which thus appears if as(x) is too large), the
density s must take (at least locally) values lower than 1 in order to compensate a:
consequently, (P) can not be well-posed in this case. This is illustrated on Fig. 1 for
a = 10, a = 25 and a = 50. Table 1 gives the corresponding values of the energy.
Remark that the functions a → J (sopt(a)), a → E(T )/E(0) are decreasing since
the subset

Va =
{

a(x) = as(x), 0 � s(x) � 1,

∫

�

s(x)dx = L|�|
}

(36)
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x1

x2

Fig. 2. T = 1, (λ, µ) = (1/2, 1), a(x) = 0X�(x)—iso-values of x → ∫ T
0 u(0)

′ · p(0)dt
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Fig. 3. T = 1, (λ, µ) = (1/2, 1), a(x) = aX�(x)—energy E(t) versus t ∈ [0, 1] for
several values of a

of admissible damping functions is increasing with a. Without any upper bound on
a, one may dissipate totally the system in finite time as proved in [4] for the 1-D
wave equation with a(x) = x−1X�(x) and � = (0, 1).

We have also observed that for a < a�, the optimal density is independent of
the initialization s0, which suggests a unique minimum. For a � a�, we may obtain
several minima although their corresponding cost are very similar.
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Table 1. (λ, µ) = (1/2, 1), T = 1—value of the cost function and energy ratio with respect
to a: J (sopt) ≈ O(a−1/2) and E(T )/E(0) ≈ O(a−2)

a = 5 a = 10 a = 25 a = 50

J (sopt) 4.7640 3.5004 2.3534 2.0883
E(T )/E(0) 1.644 × 10−1 4.488 × 10−2 4.933 × 10−3 1.186 × 10−3

Table 2. µ = 1, T = 1—value of the energy ratio with respect to λ

λ = 0.5 λ = 2.5 λ = 5 λ = 25 λ = 50

E(T )/E(0) 0.1644 0.2603 0.3249 0.3979 0.3991
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Fig. 4. T = 1, µ = 1, a(x) = 5X�(x)—iso-value of the optimal density sopt on � for
λ = 5 (left) and λ = 50 (right)

3.2.2. Influence of the Lamé coefficients The nature of (P) depends strongly
on the data of the problem: thus, for a fixed value of a, we obtain that (P) is
well-posed as soon as L (or equivalently |�| − L) is small enough (in other words,
a� is a decreasing function of L). We examine in this section the influence of
the Lamé coefficient λ. We recall that when λ is arbitrarily large (or equivalently
when the Poisson coefficient is near to 1/2), we obtain the nearly incompressible
situation. At the limit, the solution u fulfills the relation div u(t) = 0 on � for
all t > 0 (assuming divu0 = 0) (see for instance [13, chapter 2]). The system
(Equation 7) is then more constrained and the structure � more rigid.

For finite increasing values of λ, we observe on Table 2 that the ratio E(T )/E(0)

which quantifies the stabilization of the system increases. As an effect of this
additional rigidity, large value of λ leads to a reduction of the stabilization. As
shown on Fig. 4, the effect on the optimal position of the damping set is notable (to
be compared with Fig. 1 top left). At last, if large values of λ change the dynamic of
the system, it seems that the nature of (P) is unchanged: for the damping constant
a = 5 considered here, optimal densities are characteristic functions.

The incompressible limit will be examined both theoretically and numerically
in a future work.

3.2.3. Penalization of the optimal density In the case where the optimal density
sopt is not in L∞((0, T ) × �; {0, 1}), one may associate to sopt a characteristic
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Table 3. (λ, µ) = (1/2, 1), T = 1 − a = 50—value of the cost function for the penalized
characteristic density

N 1 2 3 4 5 6 7 16

J (s
pen
N ,N ) 3.824 3.261 2.446 2.238 2.161 2.137 2.109 2.096
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Fig. 5. T = 1, (λ, µ) = (1/2, 1), a(x) = 50X�(x)—iso-value of the penalized density for
N = 2, N = 5 and N = 16—bottom right: E(t) versus t associated with s

pen
N ,N

function spen ∈ L∞((0, T ) × �; {0, 1}) whose cost J (spen) is arbitrarily near to
J (sopt). Following [18], one may proceed as follows: we first decompose the domain
(0, 1)×(0, 1) into M×N cells such that � = ∪i=1,M [xi , xi+1]×∪ j=1,N [y j , y j+1]
where {xi }(i=1,M+1) and {y j }( j=1,N+1) designate two uniform subdivisions of the
interval (0, 1). Then, we associate to each cell the mean value mi, j ∈ [0, 1] defined
by

mi, j = 1

(xi+1 − xi )(y j+1 − y j )

∫ xi+1

xi

∫ y j+1

y j

sopt(x, y) dx dy (37)

At last, we define the function spen
M,N in L∞(�, {0, 1}) by

spen
M,N (x, y)=

M∑

i=1

N∑

j=1

X[xi ,(1−√
mi, j )xi +√

mi, j xi+1]×[y j ,(1−√
mi, j )y j +√

mi, j y j+1](x, y).

(38)
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We easily check that ||spen
M,N ||L1(�) = ||sopt||L1(�), for all M, N > 0. Thus, the

characteristic function spen
M,N takes advantage of the information codified in the

density sopt , as discussed in Remark 1.
Let us illustrate this point with the optimal density obtained for (λ, µ) =

(1/2, 1) and a = 50 (see Fig. 1 bottom right). The corresponding value of the
cost function is J (sopt) ≈ 2.0883. Table 3 collects the value of J (spen

M,N ) for several

values of M = N and suggests the convergence of J (spen
M,N ) toward J (sopt) ≈

2.0883 as N increases (Fig. 5).
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