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Abstract We consider the nonlinear optimal shape design problem which

consists in minimizing the amplitude of bang-bang type controls for the ap-

proximate controllability of a linear heat equation with a bounded potential.

The design variable is the time-dependent support of the control. As usual,

a volume constraint is imposed on the design variable. Thus, we look for the

best space-time shape and location of the support of the control among those

which have the same Lebesgue measure. Since the admissibility set for the

problem is not convex, we first obtain a well-posed relaxation of the original

problem and then use it to derive a descent method for the numerical reso-

lution of the problem. Numerical experiments in 2D seem to indicate that,

even for a regular initial datum, the original problem does not have a solution

and therefore a true relaxation phenomenon occurs in this context. Also, we

implement a simple algorithm for computing a quasi-optimal domain for the

original problem from the optimal solution of its associated relaxed one.
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1 Introduction

1.1 Motivation

The problem of optimizing some parameters such as size, position or number

of sensors and/or actuators in control systems modelled by partial differential

equations has attracted the interest of the engineering community during the

last decades (see for instance [8,13] and the references therein).

On the other hand, the mathematical community has addressed mainly the

problem of determining the optimal shape and position of the region where con-

trols act in a distributed parameter system. One of the main differences with

respect to engineering-oriented papers is that no restrictions on the shape of

the admissible regions are imposed, that is, an admissible domain is just a

measurable set which satisfies a certain volume constraint. This point of view

implies that, very often, the optimal design problem does not have a solution.

Thus, the relaxation method has became one of the most popular techniques

to deal with this type of optimization problems. Indeed, in the context of el-

liptic PDEs, in [11] the problem was studied of optimal reinforcing a part of a

membrane in order to minimize the work made by an a priori fixed load. Non-

existence of a solution was proved for generic loads. For the case of hyperbolic

equations, in [9,10] the authors consider the problem of optimal shape and po-

sition of the actuators for the stabilization of the wave equation. An interesting

point of these two works is that the optimality criterium does not depend on

the initial conditions of the underlying PDE. The case of optimal design of

the support for the exact controllability problem of the one-dimensional wave

equation has been recently addressed for the case of fixed initial data [15,19,

20] and also uniformly with respect to the initial conditions [20]. A numerical

study of the same problem in 2D may be found in [14]. Even for the simplest

case in which the initial data are fixed, the optimal domain, if it exist, may

have a very complicated structure. Precisely, it is proved in [20] that for the

case of exact controls with minimal L2-norm there are initial data of class C∞

for which the corresponding optimal domain is of fractal type. Consequently,

if the optimal support of the control may be so complicated, then it is natural

to simplify the way in which the control acts on the system. Typically, piece-

wise constant (in particular, bang-bang) controls are very suitable to do this

task. This is a first motivation for this work. Second, we would like to consider

the case in which the support of the control is not fixed, i.e., it changes with

time. This situation was suggested in [18] but, up to best knowledge of the

author, it has not been studied so far. Finally, this paper aims at proposing a

simple way to extend to higher dimensions and to the case of optimal controls

in the L∞-norm (at least at the level of numerical simulation) some of the



Optimal design of the time-dependent support for the heat equation 3

above-mentioned works, in particular [16], which were limited to one-space

dimension and to the L2-case.

1.2 Problem formulation

The present paper is concerned with the optimal design of the time-dependent

shape and position of support of bang-bang type controls for the approximate

null controllability of the heat equation. Let us now state the problem.

First, consider the problem of minimizing the amplitude of the bang-bang

control for the approximate controllability of the heat equation. By using a

penalty approach for the approximate null controllability condition, the prob-

lem takes the form




Minimize in (λ, 1O) :
1
2

(
λ2 + 1

α
‖y (T )‖2L2(Ω)

)

subject to

yt −∆y + ay = [λ (2 1O − 1)] 1q, (x, t) ∈ Q

y (σ, t) = 0, (σ, t) ∈ Σ

y (x, 0) = y0 (x) , x ∈ Ω

(λ, 1O) ∈ R
+ × L∞ (q; {0, 1})

where Ω is an open and bounded set of RN , N ≥ 1, with C2 boundary Γ,

Q = Ω × (0, T ) , with T > 0, Σ = Γ × (0, T ) , q ⊂⊂ Q and O ⊂⊂ Q are

(small) non-empty measurable sets of Q, 1q = 1q (x, t) and 1O = 1O (x, t) are

its associated characteristic functions, λ, α > 0, y0 ∈ L2 (Ω) and the potential

a = a (x, t) ∈ L∞ (Q) .

In this formulation, α plays the role of a penalty parameter which takes

into account the approximate null controllability condition ‖y (T )‖L2(Ω) ≪ 1,

λ is the amplitude of the bang-bang control,O depends on (x, t) and represents

the space-time region where the control takes its two values +λ and −λ, and

finally q is the space-time region where the control is active.

This problem has been recently studied in [17] for the case in which q =

ω × (0, T ) is a cylinder, with ω ⊂⊂ Ω a small subset, but in fact, with almost

no changes, the results in [17] hold in this more general setting. Since the space

L∞ (q; {0, 1}) is not convex, the following relaxed problem was found in [17],

(Bα)





Minimize in (λ, s) : Jα (λ, s) = 1
2

(
λ2 + 1

α
‖y (T )‖2L2(Ω)

)

subject to

yt −∆y + ay = [λ (2s (x, t)− 1)] 1q, (x, t) ∈ Q

y (σ, t) = 0, (σ, t) ∈ Σ

y (x, 0) = y0 (x) x ∈ Ω

(λ, s) ∈ R
+ × L∞ (q; [0, 1]) ,
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that is, the relaxation procedure simply consists of replacing L∞ (q; {0, 1}) by

its convex envelope.

Of course, the solution of (Bα) depends on the space-time region q where

the control acts. It is then natural to look for the best q among those which

have the same Lebesgue measure. In mathematical terms, we have the following

time-dependent, nonlinear, optimal shape design problem:

(Pα)





Minimize in 1q : Iα (1q) =
1
2

(
λ2
q +

1
α
‖yq (T )‖

2
L2(Ω)

)

subject to

(λq, sq) is a solution of (Bα) ,

|q| = L |Q| , 0 < L < 1,

1q ∈ L∞ (Q; {0, 1}) ,

where yq (x, t) is the solution of the heat equation associated to (λq, sq, 1q) in

problem (Bα) and | · | stands for the Lebesgue measure.

In one-space dimension, the case where the support of the control does not

depend on the time variable and the null control is of minimal L2− norm was

considered in [16]. In that case, there was a clear numerical evidence that the

corresponding optimal design problem is ill-posed, that is, the solution is no

longer a characteristic function but a density taking its values in the range

[0, 1] .

Our main goal in this work is twofold: (i) associate with (Pα) a well-posed

relaxed problem. This is done in Section 2. And (ii), use this relaxation to

solve numerically the original problem (Section 3).

We also would like to emphasize that the penalty approach for the ap-

proximate null controllability condition that we have considered from the very

beginning highly simplifies the resolution of the problem. Indeed, for the case

of the null control of minimal L2− norm, the relaxation method is based on a

uniform, with respect to the location of the support, observability inequality

for the solutions of the underlying adjoint problem. This kind of uniform ob-

servability inequality is, in our opinion, far from being easy to prove in higher

dimensions. In fact, it is known only for the wave and heat equations in one

space dimension [16,19,20]. The penalty approach avoids the need of using

such an observability inequality. In addition, it lets include the time as a vari-

able in the support, i.e., we are able to deal with supports that change with

time.

The paper concludes with a short section of conclusions and related open

problems.
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2 Relaxation procedure

Consider the following two problems:

(RBα)





Minimize in (λ, s) : Jα (λ, s) = 1
2

(
λ2 + 1

α
‖y (T )‖2L2(Ω)

)

subject to

yt −∆y + ay = [λ (2s (x, t)− 1)] θ, (x, t) ∈ Q

y (σ, t) = 0, (σ, t) ∈ Σ

y (x, 0) = y0 (x) x ∈ Ω

(λ, s) ∈ R
+ × L∞ (Q; [0, 1]) ,

with θ = θ (x, t) ∈ L∞ (Q; [0, 1]) satisfying the volume constraint
∫

Q

θ (x, t) dxdt = L |Q| , 0 < L < 1, (1)

and

(RPα)





Minimize in θ : Iα (θ) = 1
2

(
λ2
θ +

1
α
‖yθ (T )‖

2
L2(Ω)

)

subject to

(λθ, sθ) is a solution of (RBα) ,

θ ∈ L∞ (Q; [0, 1]) and θ satisfies (1).

Our main result follows.

Theorem 1 Let us assume that a = 0 or that N = 1. Then (RPα) is a true

relaxation of (Pα) in the following sense:

(i) there exists at least one minimizer of (RPα) ,

(ii) up to subsequences, every minimizing sequence, say (1qn) of (Pα) con-

verges to some θ ∈ L∞ (Q; [0, 1]) such that θ is a minimizer for (RPα) ,

and conversely,

(iii) if θ is a minimizer for (RPα) and if 1qn converges to θ weak-⋆ in L∞ (Q; [0, 1]) ,

then, up to a subsequence, 1qn is a minimizing sequence for (Pα) .

To prove this result we shall need to invoke the first-order necessary opti-

mality conditions of problem (RBα) .

Lemma 1 Let us assume that a = 0 or that N = 1 and that θ ∈ L∞ (Q; [0, 1])

satisfies (1). If (λ⋆, s⋆) is a solution of (RBα) , then s⋆ is given by

s⋆ (x, t) =

{
0 if p (x, t) < 0 and θ (x, t) > 0

1 if p (x, t) > 0 and θ (x, t) > 0,
(2)

and λ⋆ = ‖pθ‖L1(Q) , where p = p (x, t) ∈ C
(
[0, T ] ;L2 (Ω)

)
∩L2

(
0, T ;H1

0 (Ω)
)

solves the backward heat equation
{
−pt −∆p+ ap = 0, (x, t) ∈ Q

p (σ, t) = 0, (σ, t) ∈ Σ, p (x, T ) + α−1y (x, T ) = 0, x ∈ Ω,

y = y (x, t) being the solution of the heat equation in problem (RBα).
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Proof. This result is essentially proved in [17] so that we only indicate the

main steps. A straightforward computation shows that the functional Jα is

Gâteaux differentiable at each admissible (λ, s) and its directional derivative

in the admissible direction
(
λ̂, ŝ

)
is given by

∂Jα (λ, s)

∂ (λ, s)
·
(
λ̂, ŝ

)
= λ̂

(
λ−

∫

Q

p (2s− 1) θ dxdt

)
− 2λ

∫

Q

pŝθ dxdt.

Consequently, if (λ⋆, s⋆) is a solution of (RBα) , then

∂Jα(λ⋆,s⋆)
∂(λ,s) · (λ− λ⋆, s− s⋆) = (λ− λ⋆)

(
λ⋆ −

∫
Q
p (2s⋆ − 1) θ dxdt

)

−2λ⋆
∫
Q
p (s− s⋆) θ dxdt

≥ 0

(3)

for all (λ, s) ∈ R
+×L∞ (Q; [0, 1]) . Putting λ = λ⋆ in this expression and using

an standard localization argument we get (2). Notice that at this point we are

using the fact that in dimension N = 1 or when the potential a vanishes,

the zero set of p has zero Lebesgue measure (see [2]). Therefore, on the set

{(x, t) ∈ Q : θ (x, t) > 0} , s⋆ is a characteristic function. Also, in the region

where θ vanishes, the value of s⋆ is not of interest in our problem. Finally, if

we put s = s⋆ in (3), then we obtain λ⋆ = ‖pθ‖L1(Q) . ✷

Proof of Theorem 1. Let us first prove that the functional Iα (θ) is sequen-

tially continuous. Assume that θn, θ ∈ L∞ (Q; [0, 1]) satisfy (1) and that

θn ⇀ θ weak− ⋆ in L∞ (Q; [0, 1]) .

Denote by (λn, sn) the solutions of (RBα) associated to θn.

Since {λn}n∈N
is (a part of) the solution of an optimization problem,

it is bounded. Indeed, assume by contradiction that {λn}n∈N
is unbounded.

Consider the constant sequence
(
λn = 1, sn ≡ 1

)
associated to θn in problem

(RBα) . Then, the solution yn of the system





ynt −∆yn + ayn =
[
λn (2sn (x, t)− 1)

]
θn, (x, t) ∈ Q

yn (σ, t) = 0, (σ, t) ∈ Σ

yn (x, 0) = y0 (x) x ∈ Ω

satisfies {
yn ⇀ y weakly in L2

(
(0, T ) ;H1

0 (Ω)
)

ynt ⇀ yt weakly in L2
(
(0, T ) ;H−1 (Ω)

)
,

where y = y (x, t) solves





yt −∆y + ay = θ, (x, t) ∈ Q

y (σ, t) = 0, (σ, t) ∈ Σ

y (x, 0) = y0 (x) x ∈ Ω.
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By Aubin’s lemma, up to a subsequence still labelled by n,

yn → y strongly in L2
(
(0, T ) ;L2 (Ω)

)
.

Hence, up to a subsequence,

yn (t, ·) → y (t, ·) strongly in L2 (Ω) and a.e. t ∈ [0, T ] . (4)

Since yn (t) are continuous functions, convergence (4) in fact holds for all

t ∈ [0, T ]. In particular,

Jα

(
λn, sn

)
=

1

2

(
1 + ‖yn (T )‖2L2(Ω)

)
→

1

2

(
1 + ‖y (T )‖2L2(Ω)

)
as n → ∞.

Thus, for n large enough,
(
λn, sn

)
is admissible for (RBα) and gives a lower

cost than (λn, sn) , since we are assuming that {λn}n∈N
is unbounded. This

contradicts the fact the (λn, sn) is a solution of (RBα) associated to θn.

Then, up to subsequences, still labelled by n, we have

{
λn → λ

sn ⇀ s weak− ⋆ in L∞ (Q; [0, 1]) .

Let us now prove that the convergence of the sequence sn to s is in fact

strong in L2. Since λn is bounded, by using the classical estimates for the heat

equation, the solution of the system





ynt −∆yn + ayn = [λn (2sn (x, t)− 1)] θn, (x, t) ∈ Q

yn (σ, t) = 0, (σ, t) ∈ Σ

yn (x, 0) = y0 (x) x ∈ Ω

(5)

strongly converges in L2((0, T )×Ω) to y solution of





yt −∆y + ay = g, (x, t) ∈ Q

y (σ, t) = 0, (σ, t) ∈ Σ

y (x, 0) = y0 (x) x ∈ Ω.

with g = g(x, t) the weak limit of [λn (2sn (x, t)− 1)] θn. As a consequence,

the solution pn(x, t) of the adjoint system

{
−(pn)t −∆pn + apn = 0, (x, t) ∈ Q

pn (σ, t) = 0, (σ, t) ∈ Σ, pn (x, T ) + α−1yn (x, T ) = 0, x ∈ Ω,

also converges strongly in L2((0, T )×Ω) to some p. In particular, the sequence

p+n (x, t) =

{
pn(x, t) if pn (x, t) > 0

0 if pn (x, t) ≤ 0,
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strongly converges to the positive part of p, that we denote by p+. Moreover,

since sn satisfies (2),

pnsn = p+n → p+ = ps strongly in L2 (Q) .

Replacing λ⋆ = λn, λ = λn, s
⋆ = sn, s = s ∈ L∞(Q; [0, 1]) and θ = θn in (3)

we may pass to the limit in (3) to conclude that
∫

Q

p (s− s) θ dxdt ≤ 0

for all s ∈ L∞(Q; [0, 1]). Notice that λ (limit of λn) can not vanish. Reasoning

as in the proof of Lemma 1 we have that s is a characteristic function. Thus,

since both sn and s are characteristic functions,

sn → s strongly in Lp (Q) for all 1 ≤ p < ∞. (6)

We refer to [1, Remark 3.3] for details on this passage. Hence,

[λn (2sn (x, t)− 1)] θn ⇀ [λ (2s (x, t)− 1)] θ in the sense of distributions.

Reasoning as above, up to subsequences, the solution yn of the system (5)

satisfies

yn (t, ·) → y (t, ·) strongly in L2 (Ω) and a.e. t ∈ [0, T ] , (7)

where y = y (x, t) solves





yt −∆y + ay = [λ (2s (x, t) − 1)] θ, (x, t) ∈ Q

y (σ, t) = 0, (σ, t) ∈ Σ

y (x, 0) = y0 (x) x ∈ Ω.

As before, since yn (t) are continuous functions, convergence (7) in fact holds

for all t ∈ [0, T ]. In particular,

Iα (θn) =
1

2

(
λ2
n + ‖yn (T )‖

2
L2(Ω)

)
→

1

2

(
λ2 + ‖y (T )‖

2
L2(Ω)

)
as n → ∞.

(8)

Let us now prove that (λ, s) is a solution to (RBα) associated with θ. Assume,

by contradiction, that there exists
(
λ, s

)
, admissible for (RBα) and associated

to the same θ, such that

1

2

(
λ
2
+ ‖y (T )‖2L2(Ω)

)
<

1

2

(
λ2 + ‖y (T )‖2L2(Ω)

)
. (9)

Now, we look at
(
λ, s

)
as an admissible state for (RBα) associated with the

sequence θn. Reasoning as before, for each ε > 0 there exists n0 ∈ N such that

Iα (θn) <
1

2

(
λ
2
+ ‖y (T )‖2L2(Ω)

)
+ ε ∀n ≥ n0.
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Passing to the limit in this expression and taking into account (8) we have

1

2

(
λ2 + ‖y (T )‖2L2(Ω)

)
≤

1

2

(
λ
2
+ ‖y (T )‖2L2(Ω)

)
+ ε. (10)

Since ε is arbitrary, (10) is a contradiction with (9). Thus,

Iα (θ) =
1

2

(
λ2 + ‖y (T )‖

2
L2(Ω)

)

and therefore (8) shows that Iαiscontinuous.

This, together with the compactness of the weak-⋆ topology, proves that

(RPα) has a solution.

Statements (ii) and (iii) are a straightforward consequence of the continuity

of Iα and of the fact that the closedness, with respect to the weak-⋆ topology

of L∞, of the set of characteristic functions 1q ∈ L∞ (Q; {0, 1}) having a

fixed Lebesgue measure |q| = L |Q| is equal to the space of densities θ ∈

L∞ (Q; [0, 1]) which satisfy (1). We refer to [12, Proposition 7.2.14] for more

details on this last passage. ✷

3 Numerical simulations

In this section we address the numerical resolution of problem (RPα) . We

first describe the algorithm of minimization and then show some numerical

experiments. Before this, we obtain the following equivalent form of problem

(RPα) .

Consider the new problem

(
RPα

)





Minimize in (λ, s, θ) : I⋆α (λ, s, θ) = 1
2

(
λ2 + 1

α
‖y (T )‖

2
L2(Ω)

)

subject to

yt −∆y + ay = [λ (2s (x, t)− 1)] θ, in Q

y (σ, t) = 0, on Σ

y (x, 0) = y0 (x) , in Ω

(λ, s) ∈ R
+ × L∞ (Q; [0, 1]) ,

θ ∈ L∞ (Q; [0, 1]) ,∫
Q
θ (x, t) dxdt = L |Q| .

Then, we have:

Proposition 1 Problems (RPα) and
(
RPα

)
are equivalent in the following

sense: if θ is a solution of (RPα) and (λθ, sθ) is a solution of (RBα) associated

to θ, then (λθ, sθ, θ) is a solution of
(
RPα

)
, and conversely, if (λ, s, θ) is a

solution of
(
RPα

)
, then θ solves (RPα) and (λ, s) is a solution of (RBα)

associated to θ.
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Proof. Let θ be a solution of (RPα) and denote by (λθ, sθ) the correspond-

ing solution of (RBα) . We argue by contradiction and assume that there exists(
λ, s, θ

)
, admissible for

(
RPα

)
, such that

1

2

(
λ
2
+

1

α
‖y (T )‖2L2(Ω)

)
<

1

2

(
λ2
θ +

1

α
‖yθ (T )‖

2
L2(Ω)

)
. (11)

Since θ is admissible for (RPα) and θ is a solution of (RPα) ,

Iα (θ) ≤ Iα
(
θ
)
. (12)

Denote by
(
λθ, sθ

)
the corresponding solution of (RBα) associated to θ. Since(

λ, s
)
is admissible for (RBα),

1

2

(
λ2
θ
+

1

α

∥∥yθ (T )
∥∥2
L2(Ω)

)
≤

1

2

(
λ
2
+

1

α
‖y (T )‖

2
L2(Ω)

)
.

But, from (12) it follows that

1
2

(
λ2
θ +

1
α
‖yθ (T )‖

2
L2(Ω)

)
≤ 1

2

(
λ2
θ
+ 1

α

∥∥yθ (T )
∥∥2

L2(Ω)

)

≤ 1
2

(
λ
2
+ 1

α
‖y (T )‖

2
L2(Ω)

) (13)

which is a contradiction with (11).

Conversely, let (λ, s, θ) be a solution of
(
RPα

)
. As before, we argue by

contradiction and assume that there exists θ, admissible for (RPα) such that

1

2

(
λ2
θ
+

1

α

∥∥yθ (T )
∥∥2
L2(Ω)

)
<

1

2

(
λ2 +

1

α
‖y (T )‖

2
L2(Ω)

)
, (14)

where
(
λθ, sθ

)
is a solution of (RBα) associated to θ. Since

(
λθ, sθ, θ

)
is admis-

sible for
(
RPα

)
, (14) implies that (λ, s, θ) is not a solution to

(
RPα

)
, which

is a contradiction. This completes the proof. ✷

At the numerical level, problem
(
RPα

)
is simpler to solve than (RPα) .

Thus, from now on we focus on the numerical resolution of
(
RPα

)
.

3.1 Algorithm of minimization

3.1.1 Numerical resolution of problem
(
RPα

)

As usual, the volume constraint on θ is incorporated in the cost function

through a Lagrange multiplier. Therefore, we consider the augmented cost

I
⋆

α (λ, s, θ) = I⋆α (λ, s, θ) + γ

(∫

Q

θdxdt − L |Q|

)
. (15)
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A simple computation shows that the gradient of I
⋆

α at the point (λ, s, θ)

is given by

∇I
⋆

α (λ, s, θ) =

(
λ−

∫

Q

p (2s− 1) θdxdt, − 2λpθ, − λ (2s− 1) p+ γ

)
,

(16)

where the adjoint state p solves the backward equation





−pt −∆p+ ap = 0 in Q

p = 0 on Σ

p (T ) = −α−1y (T ) in Ω.

(17)

We propose the following descent algorithm to solve
(
RPα

)
:

1. Initialization: take
(
λ0, s0, θ0

)
∈ R

+ × L∞ (Q; [0, 1])× L∞ (Q; [0, 1]) , with∥∥θ0
∥∥
L1(Q)

= L |Q| .

2. For k ≥ 0, iteration until convergence as follows:

– Computation of the solution u(λk,sk,θk) of the state law in problem(
RPα

)
and then the solution pu(λk,sk,θk)

of the adjoint system (17).

– Computation of the descent direction −∇I
⋆

α

(
λk, sk, θk

)
as given by

(16) where the corresponding multiplier γk is chosen in such a way that∥∥θk+1
∥∥
L1(Q)

= L |Q| .

– Update the optimization variables, namely,





λk+1 = λk − εk1

(
λk −

∫
Q
pk

(
2sk − 1

)
θkdxdt

)

sk+1 = P[0,1]

(
sk + 2εk2λ

kpkθk
)

θk+1 = θk − εk3
(
−λk

(
2sk − 1

)
pk + γk

)

where P[0,1](x) = max(0,min(1, x)) is the projection of x on [0, 1]. The

positive step-size parameters εk1 , ε
k
2 and εk3 are chosen small enough as

to ensure that λk+1 > 0, θk+1 ∈ L∞ (Q; [0, 1]) and, in addition, there

is a decrease in the cost function. Notice that we use three different

parameters for λ and the densities s and θ.

As for the stopping criterium we take

|I
⋆

α

(
λn+1, sn+1, θn+1

)
− I

⋆

α (λn, sn, θn) | ≤ tol I
⋆

α

(
λ0, s0, θ0

)
(18)

with a tolerance tol = 10−5 in the experiments that follow.

3.1.2 From an optimal relaxed density θ to a quasi-optimal domain qM .

Theorem 1, part (iii), may be used to construct a minimizing sequence for

the original problem (Pα). Indeed, once a solution θ of problem
(
RPα

)
has

been computed by using the algorithm just described, we proceed as follows.
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For simplicity, let us assume that Ω = ]0, 1[
2
is the unit square. To begin

with, we make a regular partition of Ω in a number of sub-rectangles Ωn,

with 1 ≤ n ≤ M , for some fixed M ∈ N. Then, we compute the integral of

θ over each one of such sub-rectangles at time t. Let us denote by mt
n the

value of these integrals. According to these values, we then define the squares

qtn centred at the center of Ωn and having an area equal to mt
n. Finally, the

space-time domain qM is defined as the union of qtn. This procedure preserves

the volume constraint (1) and, as simulation results in next section show,

provides satisfactory results.

3.2 Numerical experiments

Next, we present two numerical experiments in 2D to illustrate the theoretical

results of the preceding section. We consider both a regular and a discontinuous

initial datum. Our main objectives in this section are:

(a) analyze numerically the well-ill posedness character of problem (Pα),

(b) in the case in which (Pα) is ill-posed, compute a quasi-optimal time-

dependent domain following the approach described in Subsection 3.1.2,

(c) test numerically the influence of the time-dependent character of the shape

and position of the region where the control is active, and

(d) analyze numerically the effect of small perturbations in the initial datum

on the optimal relaxed density.

In order to have a better control of the heat diffusion during the time

interval, throughout this section we replace the operator ∂t −∆ by ∂t − c∆,

with c lower than 1.

The algorithm described in the preceding section has been implemented in

the free software FreeFem++-cs 3.19-1 (http://www.freefem.org/).

Experiment 1: smooth initial datum

We take Ω = ]0, 1[
2
the unit square, y0(x1, x2) = sin(πx1) sin(πx2), c = 0.1,

T = 0.5, the potential a = 0 and the penalty parameter α = 10−4. The

state and adjoint state equations have been solved by using a backward Euler

scheme in time with ∆t = 0.05 and P1 finite elements for the spatial variable

on a uniform triangular mesh. Precisely, the unit square Ω = ]0, 1[
2
has been

decomposed into 100× 100 non-overlapping sub-rectangles, which we split up

into two equal triangles. The algorithm has been initialized with the following

parameters: λ0 = 2, s0(x, t) = 0.2 on Q and θ0(x, t) = 0.25 on Q, with

x = (x1, x2). As for the volume constraint we take L = 0.25.

After convergence of the algorithm (755 iterations) we obtain s(x, t) = 0,

except near the boundary where s takes some values in ]0, 1[. This is due to the
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boundary condition that the adjoint state p satisfies. Notice that s is updated

through p and hence it is difficult to move s from its inital value near the

boundary. Fortunately, this numerical error is compensated by the density θ

which is almost zero close to the boundary. Anyway, no oscillations in the

control is observed for this initial condition. This is in agreement with the fact

that the initial condition y0 is non-negative. As usual, an exponential decrease

in the cost function is obtained.

Table 1 collects results for the solution of problem
(
RPα

)
(first column)

and results obtained from the quasi-optimal domain qM , with M = 25, as

described in Subsection 3.1.2 (second column). We notice that the optimal s

and λ for the optimal density θ are not optimal for qM . For this reason, after

computing qM we perform a few more iterations to obtain new s and λ which

are closer to the optimal ones for qM . In particular, as in the case where the

domain does not depend on time, the density s oscillates near the final time

and takes some values in (0, 1). A very fine mesh together with a large number

of iterates is needed to recover a bi-valued function. We do not enter in details

on this issue here because it has been deeply studied in [17].

Figure 1 shows the pictures of the optimal density θ(x, t) in Ω and of

its associated quasi-optimal time-dependent domain qM at the times t =

0.1, 0.3, 0.5. We observe that the optimal θ(x, t) is not a characteristic func-

tion. This seems to indicate that a true relaxation phenomenon occurs even

for a very regular initial condition. A similar qualitative result was observed

for the L2-case in one space dimension and time-independent domains (see

[16]). Also, it is observed the strong dependence of θ(x, t) with respect to the

time variable and therefore, the quasi-optimal domain qM is not a cylinder as

it also depends on time. Notice that for every x ∈ Ω the function t 7→ θ(x, t)

is increasing. For instance, the values of θ(0.5, 0.5; t) range from 0.35098 for

t = 0.1 (Figure 1, top left) to 0.90933, for t = 0.5 (Figure 1, bottom left).

Consequently, the control system takes advantage of the natural dissipation of

the heat equation and thus concentrates the action of the control mainly near

the final time T .

Finally, to test numerically the dependence of the optimal relaxed density θ

with respect to the initial condition, y0(x) has been affected by additive gaus-

sian white noise with several standard deviations σ. More precisely, to generate

a normal distribution function we have used the Box-Muller transformation

y0 =
√
−2 log(X1) cos(2πX2)

where both X1 and X2 are independent random variables that are uniformly

distributed in the interval (0, 1]. Thus, we have perturbed point-wise the initial

condition to obtain y(x, 0) = y0(x)(1 + σy0). With this new initial datum and

for several values of the level noise σ we have solved problem
(
RPα

)
to obtain

a new optimal density θσ(x, t). Table 2 displays results of ‖θ − θσ‖L1(Q) and
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Table 1 - Experiment 1- First column displays results for the optimal density θ(x, t), solu-

tion of (RPα). Second column shows results of its associated quasi-optimal time-dependent

domain q25.

optimal relaxed density θ quasi-optimal domain qM

‖y(T )‖L2(Ω) 1.51644 × 10−3 5.5333 × 10−3

λ 1.91110 2.00497

Table 2 - Experiment 1- Values of ‖θ − θσ‖L1(Q) and |λ− λσ| for σ = 0.1 and σ = 0.01.

σ = 0.1 σ = 0.01

‖θ − θσ‖L1(Q) 6.1326× 10−3 6.09936 × 10−3

|λ− λσ | 0.0009 0.000167

|λ−λσ | for σ = 0.1 and σ = 0.01. A very low variation of θ, solution of
(
RPα

)
,

with respect to the initial datum y0 is observed.

Experiment 2: discontinuous initial datum

As in the preceding experiment, we take Ω = ]0, 1[2 the unit square, c = 0.1

and T = 0.5. As for the penalty parameter, now α = 10−5. We consider

the constant potential a = −1 over Q and the discontinuous initial condition

y0 = −1]0.1,0.4[×]0.1,0.4[ + 1]0.6,0.9[×]0.6,0.9[. For the volume constraint we take

L = 0.1613658. The state and adjoint state equations have been solved as in

the preceding experiment.

As for the initialization of the algorithm, λ0 = 1.5 and, in order to favour a

quick convergence of the densities s and θ, we take s0(x1, x2, t) = 1{(x1+x2<1}

and

θ0(x1, x2, t) = 0.5e2t−1
[
e−9((x1−0.25)2+(x2−0.25)2) + e−9((x1−0.75)2+(x2−0.75)2)

]
.

Indeed, in this case the stopping criterium (18) is satisfied after 135 iterates.

Table 3 collects results for the solution of problem
(
RPα

)
(first column)

and results obtained from the quasi-optimal domain qM , with M = 25, as

described in Subsection 3.1.2 (second column).

The optimal density θ(x, t) is also a non-characteristic function which con-

centrates mainly in the support of the initial datum y0 and shows a variation

with respect to the time variable. As for the density s(x, t), up to numerical

approximation errors, it is also a bi-valued function which, as expected, takes

the value 1 in the region x1 + x2 ≤ 1 and zero in the rest. As an illustration

of the results, Figure 2 displays the iso-values of θ(x, 0.5) (left) and s(x, 0.5)

(right).
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Fig. 1 - Experiment 1- Left column displays results for the optimal density θ(x, t) in Ω

for t = 0.1 (top) t = 0.3 (middle), and t = 0.5 (bottom). Right column shows results of

its associated quasi-optimal time-dependent domain q25 for the same discrete times t =

0.1, 0.3, 0.5. The region where the control is active and is equal to −λ is in blue color. Red

color is for the region where the control is not active.
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Table 3 - Experiment 2- First column displays results for the optimal density θ(x, t), solu-

tion of (RPα). Second column shows results of its associated quasi-optimal time-dependent

domain q25.

optimal relaxed density θ quasi-optimal domain qM

‖y(T )‖L2(Ω) 5.78899 × 10−4 1.6125 × 10−3

λ 1.08674 1.29975

Table 4 - Experiment 2- Values of ‖θ − θσ‖L1(Q) and |λ− λσ| for σ = 0.1 and σ = 0.01.

σ = 0.1 σ = 0.01

‖θ − θσ‖L1(Q) 3.95225 × 10−3 3.82754 × 10−3

|λ− λσ | 0.00621 0.00062

Figure 3 shows the quasi-optimal control λ(2s − 1)1q25 at times t = 0,

t = 0.2 and t = 0.4 (right column) and its associated controlled solution y(x, t)

at the times t = 0, t = 0.3 and t = 0.5 (right column). As in the preceding

experiment, we observe that the density s associated with q25 (contrary to

what happens with the density associated to θ) oscillates near the final time.

We refer again to [17] for more details on this phenomenon.

Fig. 2 - Experiment 2- Pictures of the optimal densities θ(x, 0.5) (left) and s(x, 0.5) (right).

Similarly to Experiment 1, Table 4 collects results of ‖θ − θσ‖L1(Q) and

|λ− λσ| for σ = 0.1 and σ = 0.01.

4 Conclusions and related open problems

In this paper, we have considered the problem of determining the best shape

and position of the support of optimal controls in the L∞-norm (a fortiori,

bang-bang type controls) for the approximate controllability of a linear heat
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Fig. 3 - Experiment 2- Left column displays results for the controlled solution y(x, t) at

times t = 0 (top), t = 0.2 (middle) and t = 0.5 (bottom). Right column shows results for

its associated quasi-optimal control λ(2s− 1)1q25 at times t = 0 (top), t = 0.2 (middle) and

t = 0.4 (bottom). Control is inactive in the grey color region, control is equal to +λ in the

black region, and to −λ in the white region.

equation with a bounded potential. One of the main novelties with respect

to previous related works is that the shape and position of the support of

the control depends on the time variable. Since the problem is not convex, a

well-posed relaxed formulation has been obtained and a numerical algorithm

for the resolution of the relaxed problem has been proposed and tested in two

numerical experiments.

Numerical simulation results seem to indicate that, even for very regular

initial conditions, the original problem is ill-posed and therefore a true relax-
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ation phenomenon occurs in this context. Anyway, a quasi-optimal solution of

the original problem is obtained from the solution of the relaxed one.

Although the initial condition of the state law is fixed from the very be-

ginning, the dependence of the solution of the design problem with respect

to small perturbations of the initial datum has been numerically analyzed.

Therefore, the approach of this paper provides some insights to the problem

of optimal design of support of the control not only for a single initial datum

but for a set of initial data with support localized in an specific region.

To conclude, let us mention the following related open problems:

– The results of this paper may be extended to the case where the control

acts on a part of the boundary and the state law is a more general linear

parabolic equation or even a semilinar parabolic equation. For the case in

which the support of the control does not depend on time, some positive

controllability results in the linear and semilinear case exists both at the

theoretical level in the case of optimal controls in the L∞-norm [6] and at

the numerical one in the L2-norm [3,7].

– Also, the case where the support of the control has the form

q = ωt × (0, T ), with |ωt| = L|Ω| ∀t,

i.e., the volume constraint is satisfied at each time slice, can be studied in

the same manner. In particular Theorem 1 and the numerical algorithm

proposed here hold in this case. The only difference is that the Lagrange

multiplier in equation (15) should depend on time.

– Consider the approximate controllability problem for the heat equation

where the control acts on a curve γ : [0, T ] → Ω. Here, the goal is to

compute the optimal control f = f(x, t) in L2-norm (or in L∞-norm) such

that for a given ǫ ≪ 1 the solution of the problem





yt −∆y = f (x, t) δγ(t) (x) , (x, t) ∈ Q

y (σ, t) = 0, (σ, t) ∈ Σ

y (x, 0) = y0 (x) x ∈ Ω.

satisfies ‖y (T ) ‖L2(Ω) ≤ ǫ. For the case in which the curve γ is fixed,

this problem has been studied in [5] and also in [4] in the case of the

wave equation. A natural question that arises is the optimal design of the

curve γ, i.e., the computation of the curve that best minimizes the norm

of the control. This situation may be considered as a limit case (when the

parameter for the volume constraint L → 0) in a similar formulation as in

the present paper.



Optimal design of the time-dependent support for the heat equation 19

References

1. G. Allaire, A. Münch and F. Periago, Long time behavior of a two-phase optimal design

for the heat equation, SIAM J. Control Optim. 48 (8), 5333-5356 (2010).

2. S. Angement, The zero set of a solution of a parabolic equation, J. reine angew. Math.

399, 79-96 (1988).

3. C. Carthel, R. Glowinski and J. L. Lions, On exact and approximate boundary control-

labilities for the heat equation: a numerical approach, J. Optim. Theory Appl. 82 (3),

429-484 (1994).

4. C. Castro, Exact controllability of the 1-d wave equation from a moving interior point.

ESAIM: Control, Optimisation and Calculus of Variations, doi:10.1051/cocv/2012009.

5. C. Castro and E. Zuazua, Unique continuation and control for the heat equation from an

oscillating lower dimensional manifold, SIAM J. Control Optim., 43(4) 1400-1434 (2005).
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20. Y. Privat, E. Trélat, E. Zuazua, Optimal location of controllers for the one-dimensional

wave equation. Preprint Hal (2012).


	Introduction
	Relaxation procedure
	Numerical simulations
	Conclusions and related open problems

