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Abstract

The problem of computing numerically the boundary exact control for the system of linear elasticity in 2D is ad-
dressed. A numerical method which has been recently proposed in [Stud. Appl. Math. 121 (2008), no. 1, 27–47]
is implemented. Two cases are considered: first, a rectangular domain with Dirichlet controls acting on two adjacent
edges, and secondly, a circular domain with Neumann controls distributed along the whole boundary.
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1. Introduction - Problem Formulation

During the last decades important progress has been made in the exact controllability of distributed parameter
systems both from a theoretical and numerical point of view. After the works by D. L. Russell [8], J. L. Lions [5]
and many others, the mathematical linear theory is very well established. Regarding the numerical resolution of
controllability problems, a lot of work has been also carried out since the pioneering works by R. Glowinski et al.
(see [4] and the references there in). But, even so, the development of numerical methods for solving some of these
problems is still a challenge. An important difficulty arises in the fact that numerical schemes that are stable for
solving simple initial-boundary value problems (like the 1D wave equation) may be unstable in exact controllability
[10]. Thus, the method may fail which consists in (a) approximating distributed-parameter control systems by finite-
dimensional control systems, (b) computing the family of controls of such a systems and (c) recovering the control of
the original system as the limit (when the size mesh goes to zero) of the finite-dimensional controls.

In this note, we consider the problem of computing numerically the boundary exact control for the free vibrations
of a two-dimensional homogeneous and isotropic elastic body occupying a bounded domain Ω ⊂ R2 with boundary
Γ = ∂Ω. For the case of Dirichlet-type controls acting on a part, say Γ1, of Γ, and given initial data

(
u0 (x) , u1 (x)

)
in

a suitable function space, the problem of exact controllability for the system of linear elasticity refers to the existence
of a positive time T and a control function v = v (x, t) such that the solution u = u (x, t) of the system



utt − µ∆u − (λ + µ)∇divu = 0 in Q = Ω × (0,T )
u = 0 on

∑
0 = Γ0 × (0,T )

u = v on
∑

1 = Γ1 × (0,T )
(u (0) , ut (0)) =

(
u0, u1

)
in Ω

(1)

satisfies the null controllability condition

u (T ) = ut (T ) = 0 in Ω. (2)
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(Agencia de Ciencia y Tecnologı́a de la Región de Murcia, Spain. II PCTRM 2007-10).
∗Corresponding author
Email address: f.periago@upct.es (Francisco Periago)

Preprint submitted to Elsevier June 11, 2009



As usual, t stands for the time variable, x = (x1, x2) is the spatial variable, u (x, t) = (u1 (x, t) , u2 (x, t)) is the displace-
ment of the material point x at time t, ∆ = ∂2

∂x2
1

+ ∂2

∂x2
2

is the Laplacian, ∇ =
(
∂
∂x1
, ∂
∂x2

)
is the gradient, the boundary

Γ = Γ0 ∪ Γ1 is composed of two disjoint parts, and λ, µ > 0 are Lamé’s coefficients.
From a theoretical point of view, this problem has already been analyzed and solved. We refer for instance to [1]

and to [5, Ch. IV] for some positive results concerning the existence of solutions in the usual function spaces. We
also notice that due to the finite velocity propagation of elastic waves, the controllability condition (2) cannot hold
for arbitrary small time T. Therefore, there is a minimal time, say T? > 0, which depends on Ω, Γ0 and on Lamé
coefficients, for which problem (1)-(2) has a solution. Since this work is mainly devoted to numerical simulation we
do not enter here in these (important) details and refer the reader to the above mentioned references [1, 5].

The aim of this note is to implement a numerical method for the resolution of problem (1)-(2). Our approach
is based on Russell’s ideas [7, 8]. The convergence of the numerical algorithm follows easily from the fact that the
elasticity system in R2 locally dissipates its energy [6]. As we will see later on, the main advantage of this method is
that it applies to general geometries and boundary conditions. In addition, it requires very simple mathematical tools.
Indeed, only the use of the Fast Fourier Transform (FFT) for solving some associated Cauchy problems is needed. As
a consequence, this method does not generate spurious high frequency solution components.

The rest of the paper is organized as follows. In Section 2, we briefly describe the numerical method employed
for computing the boundary controls. In Section 3, the algorithm is implemented in two cases. First, we solve system
(1)-(2) with Ω the unit square and Γ1 two adjacent edges. The control is of Dirichlet-type, that is, the control function
is the displacement field on a part of the boundary. Secondly, we consider a circular domain and the controls are
distributed along the whole boundary in the form of a density of forces (Neumann-type control).

2. Description of the numerical scheme

In this section, we briefly describe the numerical algorithm for solving the controllability problem (1)-(2). For a
detailed analysis of this method (including convergence and computational cost of its computer implementation) we
refer the reader to [6].

To fix ideas, let us assume that Ω ≡ R1 = (0, 1)2 is the unit square, Γ0 is composed of the two edges x1 = 0 and
x2 = 0, and Γ1 is the rest of the boundary, i.e.,

Γ1 =
{
(1, s) ∈ R2 : 0 < s ≤ 1,

}
∪

{
(s, 1) ∈ R2 : 0 < s ≤ 1

}
.

The algorithm is structured as follows:

Step 1. We begin by extending the initial data
(
u0, u1

)
of system (1) to all of R2. To this end, consider the rectangles

R2 = (−1, 0) × (0, 1) , R3 = (−1, 0) × (−1, 0) and R4 = (0, 1) × (−1, 0)

and denote

R =

4⋃

i=1

Ri.

We extend
(
u0, u1

)
to R in an odd fashion on R2 and R4 and in an even way on R3. On the rest of the plane, we extend

the data with zero value. Let us denote by
(
φ0, φ1

)
these new data and consider the Cauchy problem

{
φtt − µ∆φ − (λ + µ)∇divφ = 0 in R2 × (0,T )
(φ (0) , φt (0)) =

(
φ0, φ1

)
in R2.

(P1)

Numerically, the solution φ (x, t) of this system may be computed in a standard way by using a FFT algorithm.
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Step 2. Consider now the system
{
ψtt − µ∆ψ − (λ + µ)∇divψ = 0 in R2 × (0,T )
(ψ (0) , ψt (0)) =

(
ψ0, ψ1

)
in R2.

(P2)

where the new initial data
(
ψ0, ψ1

)
are obtained by extending to R2 the restriction to Ω of the solution at time T of

(P1) with a change of sign in the first component, say (−φ (T ) , φt (T ))|Ω , in a similar fashion as in Step 1. As before,
we then solve (P2).

Step 3. Next, define the initial data (
φ̂0, φ̂1

)
=

(
u0 − ψ (T ) , u1 + ψt (T )

)
, (3)

and with these data repeat steps 1 and 2. Let us denote by φ̂, ψ̂ the corresponding solutions of (P1) and (P2), respec-
tively. Then the function

û (x, t) = φ̂ (x, t) + ψ̂ (x,T − t) , 0 ≤ t ≤ T, x ∈ Ω

is a numerical approximation of the state u (x, t) of system (1). In addition, the function

v̂ (y, t) = φ̂ (y, t) + ψ̂ (y,T − t) , 0 ≤ t ≤ T, y ∈ Γ1,

is a numerical approximation of the boundary control v (x, t).

Remark 1. As explained in detail in [6], and denoting by X0 × X1 an appropriate function space for the initial
conditions, the proof of convergence of the above described algorithm is equivalent to proving that the operator

LT : X0 × X1 → X0 × X1(
φ0, φ1

)
7→

(
φ0 + ψ (T ) , φ1 − ψ′ (T )

)

is surjective. This amounts to showing that there exists a positive constant C (T ) , with C (T ) < 1, such that
∥∥∥∥
(
φ|Ω (T ) , φ′

∣∣∣
Ω

(T )
)∥∥∥∥

X0×X1
≤ C (T )

∥∥∥∥
(
φ0, φ1

)∥∥∥∥
X0×X1

for all
(
φ0, φ1

)
∈ X0 × X1. (4)

For T large enough, (4) may be proved by transforming the system of elasticity into a system of wave equations and
then using Poisson’s formula for the wave equation (see for instance [2, 3]). Finally, we notice that the algorithm
described in Steps 1-3 above is based on a first-order approximation of operator L−1

T .

3. Numerical simulations

3.1. The unit square with Dirichlet controls acting on two adjacent edges
As in the preceding section we put Ω ≡ R1 = (0, 1)2 the unit square, Γ0 the edges x1 = 0 and x2 = 0, and

Γ1 =
{
(1, s) ∈ R2 : 0 < s ≤ 1,

}
∪

{
(s, 1) ∈ R2 : 0 < s ≤ 1

}
.

We assume that the displacement field is equal to zero at Γ0 and that the controls act on Γ1 as in (1). It is well-known
[5, p. 474] that in this case the minimum time for exact controllability T ∗ = 2

√
2

µ
, with µ the Poisson ratio. We take

λ = 0.5, µ = 1, T = 3 and consider the simple initial conditions

u0 (x1, x2) = (0.2 sin (πx1) sin (πx2) , 0.2 sin (πx1) sin (πx2)) , u1 (x1, x2) = (0, 0) .

We have used a Fast Fourier Transform (FFT) algorithm for solving the associated Cauchy problems. Precisely,
following the notation of [9, Ch. 5], we have taken N = 1024 and L = 32 which provides a mesh size h = L/N =

0.0313 and frequency resolution f r = 2π/L = 0.1963. The grossest of aliasing errors have been removed by putting,
as usual, K = N/8. Both the direct and inverse FFT algorithms have been tested for functions for which the Fourier
transforms are explicitly known leading to errors both in the discrete L∞ and L2 norms of the order of 10e − 14.

Figure 1 shows the animation of the state u (x1, x2, t) at different times and in the form of a deformed mesh.
Figure 2 displays the pictures for the controls. Precisely, denoting v1 =

(
v1

1, v
2
1

)
the control at the edge x1 = 1 and

v2 =
(
v1

2, v
2
2

)
the control at x2 = 1, Figure 2 shows v1

1 and v1
2. Due to the symmetry of the initial data, v1

1 = v2
1 and

v1
2 = v2

2. The mesh size for the time variable is equal to 0.15.
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Figure 1: Animation of the state u(x, tk) from left to right and from top to bottom for tk = 0, 0.15, 0.30, 0.45, 0.75, 0.90, 1.65, 2.10, 3.
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Figure 2: Picture of the controls v1
1 (t) -left- and v1

2 (t) -right- during the time interval 0 ≤ t ≤ 3.
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3.2. The unit circle with Neumann control distributed along the whole boundary
Let Ω =

{
(x1, x2) ∈ R2 : x2

1 + x2
2 < 1

}
be the unit circle and consider the boundary control system



utt − µ∆u − (λ + µ)∇divu = 0 in Q = Ω × (0,T )
σ · n = v on

∑
= Γ × (0,T )

(u (0) , ut (0)) =
(
u0, u1

)
in Ω

(5)

where

σi j = λεkkδi j + 2µεi j, with εi j =
1
2

(
∂ui

∂x j
+
∂u j

∂xi

)
, 1 ≤ i, j ≤ 2,

λ = 0.5, µ = 1, and n = (n1, n2) is the outward unit normal vector to Γ. Hence, in this case the control v =
(
v1, v2

)

represents a density of forces acting on the whole boundary. For the initial conditions

u0 (x1, x2) = 0.1
(
exp

[
−64

(
(x1 − 0.2)2 + (x2 − 0.2)2

)]
, exp

[
−64

(
(x1 − 0.2)2 + (x2 − 0.2)2

)])
, u1 (x1, x2) = (0, 0)

and controllability time T = 2, Figures 3 and 4 show the results obtained by implementing the algorithm described
in the preceding section. Since, in this case the control acts on the whole boundary, the extensions of the initial
conditions to R2 for the successive Cauchy problems have been done with zero value outside Ω. We have used the
same parameters for the FFT algorithm as in the preceding case. The data for mesh sizes are h1 = π/40 for the angle,
h2 = 0.05 for the radius, and h3 = 1/80 for the time variable.
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Figure 3: Pictures of the controls v1 (t) -left- and v2 (t) -right- for 0 ≤ t ≤ 2.
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Figure 4: From left to right and from top to bottom, pictures of the first component u1 (x, tk) at times tk = 0, 0.2, 0.4, 0.5, 0.6, 0.8, 1, 1.5, 2.
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