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A Numerical Method of Local Energy Decay
for the Boundary Controllability of Time-Reversible

Distributed Parameter Systems

By Pablo Pedregal, Francisco Periago, and Jorge Villena

This paper deals with the numerical computation of the boundary controls of
linear, time-reversible, second-order evolution systems. Based on a method
introduced by Russell (Stud. Appl. Math. LII(3) (1973)) for the wave equation,
a numerical algorithm is proposed for solving this type of problems. The
convergence of the method is based on the local energy decay of the solution
of a suitable Cauchy problem associated with the original control system. The
method is illustrated with several numerical simulations for the Klein–Gordon
and the Euler–Bernoulli equations in 1D, the wave equation on a rectangle,
and the plate equation on a disk.

1. Introduction

Let � ⊂ R
n be a bounded domain with a regular boundary �. Consider the

second-order evolution system


y′′ + Ay = 0, in Q = � × (0, T )

y(0) = y0, y′(0) = y1 in �

B j y = v j on � = � × (0, T ) for j = 1, . . . , m,

(1)
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2 P. Pedregal et al.

where A is an elliptic operator of order 2k, k = 1, 2, . . . , with constant
coefficients. Typically, A = −�, with � the Laplacian, A = �2 the biharmonic
operator, or A = −µ� − (λ + µ)∇(∇·) the operator of linear elasticity for
isotropic and homogeneous materials. In this last case, the unknown y is a
vector of n-components. As for B j , 1 ≤ j ≤ m, we suppose that this is a
family of linear operators acting on the spatial variable x ∈ � for all 0 ≤ t ≤
T . For instance, B j may be of Dirichlet, Neumann, or Robin type.

Given initial data (y0, y1) and boundary data {v j}1≤ j≤m in appropriate
spaces, let us assume that system (1) is well-posed in a suitable function space
and in the sense that there exists a unique solution (in some sense) defined
in the time interval [0, T]. The problem of boundary exact controllability
for system (1) refers to the existence of a positive time T and a family of
boundary controls {v j}1≤ j≤m such that at time T the solution of (1) satisfies
the exact controllability condition

y(T, ·) = y′(T, ·) = 0 in �. (2)

From a theoretical point of view, this problem has been analyzed and solved
some decades ago from different perspectives. On the one hand, in the early
1970s Russell [1, 2] developed a general method which is valid not only for
hyperbolic equations but also for parabolic ones. On the other hand, in the late
1980s Lions [3] introduced his famous Hilbert Uniqueness Method (HUM) in
which exact controllability is deduced from a suitable observability inequality
for the solutions of the associated homogeneous (i.e., uncontrolled) system.

From the numerical viewpoint, although some progress has been made in
recent years, the problem of computing numerically the boundary control for
general distributed parameter systems is still a challenge. The main difficulty
arises in the fact that some numerical methods that are stable for solving
initial-boundary value problems may be unstable in feedback stabilization
and controllability because these schemes develop spurious high frequency
numerical solutions that do not exist at the continuous level. It is however
important to mention that since the pioneering works by Glowinski et al. [4–6]
a number of sophisticated methods (most of them based on HUM) have been
proposed to cure this pathology. We refer the reader to [7–11].

Returning to the method by Russell, its main idea for the case of the wave
equation is to associate with the control system (1)–(2), a Cauchy problem in
the whole space R

n where the new initial data are defined from the original
ones by extending these by zero outside �. Let us denote by ȳ the solution of
this initial-value problem. Then the elements B j ȳ, 1 ≤ j ≤ m, acting on �,
produce a dissipation of energy in the control region � where the original
exact controllability problem is posed. From this, by using the superposition
principle, the exact controllability condition is deduced very easily.

The aim of this work is to apply Russell’s method to the numerical
computation of the boundary controls of the exact controllability problem
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Numerical Method of Local Energy Decay 3

(1)–(2). As we will see later on, the numerical scheme that we propose is
very simple and easy to implement in a computer. The convergence of the
algorithm is based on the fact that the operator which connects the initial
data of the original control system to the restriction to � of the solution of
its associated Cauchy problem, is contractive (see estimate (4)). This is our
Theorem 1. Moreover, because the boundary controls are obtained as the sum
of the restriction to � of the solutions of a pair of Cauchy problems, every
stable numerical scheme for solving initial-value problems is also stable for
computing the boundary controls. In this respect, the algorithm proposed does
not generate fictitious numerical solutions.

The rest of the paper is organized as follows. In Section 2, we present a
complete and detailed description of the method including its advantages and
disadvantages. Section 3 is devoted to the application of the method to the
linear Klein–Gordon and the Euler–Bernoulli equations in one dimension, and
to the wave and plate equations in 2D. We conclude the paper with a short
section on further comments and conclusions.

2. Description and analysis of the method

Let us assume that the initial data (y0, y1) of system (1) belong to some
Banach space X = X0 × X1.

The method we plan to describe is composed of the following three main
steps:

Step 1: Extension to a Cauchy problem in the whole space. We begin by
extending the initial data (y0, y1) of system (1) to the whole space R

n . Denote
by (ȳ0, ȳ1) this new data set. Consider now the Cauchy problem{

ȳ′′ + Aȳ = 0, in R
n × (0, T )

ȳ(0) = ȳ0, ȳ′(0) = ȳ1 in R
n

(3)

and assume that this problem is well-posed.
Before going on with the method, a comment on the above extension of the

initial data is in order. For practical reasons, it is very important to control a
system acting only on a small part of the boundary. So, in general, the family
of boundary controls Bjy, 1 ≤ j ≤ n, have the form

B j y =
{

v j on �0 = �0 × (0, T )

0 on �\�0,

where �0 is a part of � with positive Lebesgue measure. Thus, the extension
of the initial data (y0, y1) should be such that the solution ȳ of (3) complies
with the boundary conditions B j ȳ = 0 on �\�0. As we will later see, in one
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4 P. Pedregal et al.

dimension and in simple geometries, such as rectangles in R
n , this is not so

difficult to obtain. If no additional conditions are imposed on the boundary
controls, that is, the controls act on all of the boundary, then we propose to
extend (y0, y1) by zero in R

n\�. In both cases, the important facts are: (a)
(ȳ0, ȳ1) have a compact support, and (b) they belong to some Banach space,
say X̄ = X̄0 × X̄1, in which system (3) is well-posed. For instance, we may
think of putting X = X0 × X1 as H p(�) × Hq(�), and X̄ = X̄0 × X̄1 as
H p(Rn) × Hq(Rn) for some p, q ∈ R.

Notice that the restriction of ȳ to �, say ȳ|�, is a solution of system (1)
with v j = B j ȳ|� for 1 ≤ j ≤ m.

Step 2: Decay of local energy of system (3). The key point of the method is
that the following local energy decay property be satisfied: There exists a
positive constant C(T), with C(T) < 1, such that

‖(ȳ|�(T ), ȳ′|�(T ))‖X ≤ C(T )‖(y0, y1)‖X for all (y0, y1) ∈ X. (4)

In some sense, this estimate plays a similar role as the observability inequality
in the HUM. Estimate (4) has been proved for the case of the wave equation in
2D and X = Hr × Hr−1, r ≥ 2, in [1, corollary 4.2].

Step 3: Superposition’s principle. In this step, we show that if (4) holds,
then the exact controllability condition (2) is satisfied.

To this end, take (φ0, φ1) ∈ X and extend these data to R
n as indicated in

Step 1. Let us denote by (φ̄0, φ̄1) ∈ X̄ this new data set. Consider now the
Cauchy problem{

φ̄′′ + Aφ̄ = 0, in R
n × (0, T )

φ̄(0) = φ̄0, φ̄′(0) = φ̄1 in R
n

. (5)

Then, the function φ = φ̄|�×(0,T ) solves the initial-boundary value problem


φ′′ + Aφ = 0, in Q = � × (0, T )

φ(0) = φ0, φ′(0) = φ1 in �

B jφ = g j on � = � × (0, T ) for j = 1, . . . , m,

(6)

with g j = B j φ̄ for j = 1, . . . , m.
Next, consider the system{

ψ̄ ′′ + Aψ̄ = 0, in R
n × (0, T )

ψ̄(0) = ψ̄0, ψ̄ ′(0) = ψ̄1 in R
n

(7)

where the initial data (ψ̄0, ψ̄1) are obtained from

(ψ0, ψ1) = (−φ(T ), φ′(T )) (8)
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Numerical Method of Local Energy Decay 5

by extending these again as in Step 1. Then, it is clear that the function
ψ = ψ̄ |�×(0,T ) is a solution of


ψ ′′ + Aψ = 0, in Q = � × (0, T )

ψ(0) = ψ0, ψ ′(0) = ψ1 in �

B jψ = h j on � = � × (0, T ), 1 ≤ j ≤ m,

(9)

with h j = B j ψ̄, 1 ≤ j ≤ m.
Finally, set z(x , t) = φ(x , t) + ψ(x , T − t). Because the operators A and

B j are linear, z solves the exact controllability problem


z′′ + Az = 0, in Q = � × (0, T )

z(0) = z0, z′(0) = z1 in �

B j z = f j on � = � × (0, T ) for j = 1, . . . , m

z(T ) = z′(T ) = 0 in �

(10)

with

(z0, z1) = (φ0 + ψ(T ), φ1 − ψ ′(T )) (11)

and

f j (x, t) = g j (x, t) + h j (x, T − t) for (x, t) ∈ � × (0, T ) and 1 ≤ j ≤ m.

This procedure gives us the desired controllability condition (2) for the initial
data (11). The question now is whether every set of initial data (y0, y1) ∈ X
may be represented in the form (11). This is equivalent to saying that the
linear operator

LT : X = X0 × X1 → X = X0 × X1

(φ0, φ1) �→ (φ0 + ψ(T ), φ1 − ψ ′(T ))

is surjective. Decomposing LT = I − K T , where K T is given by

KT (φ0, φ1) = (−ψ(T ), ψ ′(T )),

it suffices to show that ‖K T ‖ < 1. However, this follows directly from a
two-fold application of (4). Precisely, we have

‖KT (φ0, φ1)‖X = ‖(−ψ(T ), ψ ′(T ))‖X

≤ C(T )‖(−φ(T ), φ′(T ))‖X

≤ (C(T ))2‖(φ0, φ1)‖X ,

where T is such that C(T) < 1.
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6 P. Pedregal et al.

As a result of the strategy we have developed in Steps 1–3, we obtain the
following result.

THEOREM 1. With the same notations and assumptions as in Step 1 above, let
us assume that (4) holds for some time T > 0 such that C(T) < 1. Then,
for every given initial data (y0, y1) ∈ X there exists a family of boundary
controls {v j}1≤ j≤m such that the solution of system (1) satisfies the exact
controllability condition (2).

The method we have just described leads to the following numerical
algorithm for computing the boundary controls {v j}1≤ j≤m .

2.1. Numerical algorithm Q1

As shown in Step 3, we have obtained the exact controllability property for
system (10) and for the initial data (11). So, given initial data (y0, y1) ∈ X , the
main task is to find (φ0, φ1) ∈ X such that LT (φ0, φ1) = (y0, y1). Because,
LT = I − K T , with ‖K T ‖ < 1, we have the following representation for the
operator L−1

T :

L−1
T = I + KT + K 2

T + · · · .

Therefore, we may obtain different approximations of L−1
T depending on the

power of K T that we consider. For instance, suppose that we approximate L−1
T

by a first-order expansion in K T , i.e., L−1
T ≈ I + K T , and hence

L−1
T (y0, y1) ≈ (y0, y1) + KT (y0, y1). (12)

Then, we propose to follow the scheme:

(a) Take (y0, y1) ∈ X , extend these data to all of R
n as in Step 1, and then

solve system (5) at time t = T .
(b) With the solution obtained in (a), consider a new pair of initial conditions

as in (8), extend these data as before and then solve system (7) also at
time t = T . Denote the solution of this last system by ϕ(x, T).

(c) Define the new data

(φ0, φ1) = (y0 − ϕ(T ), y1 + ϕ′(T )),

which are first-order approximations of L−1
T (y0, y1) as in (12).

(d) With this data set, repeat steps (a) and (b), but now keep the solutions,
say φ(x, t) and ψ(x, t) of these problems, and the boundary controls
g j (x , t) and h j (x , t) as given by systems (6) and (9). Approximations of
both the state y(x, t) and the family of controls {v j}1≤ j≤m of system (1)
are then given by

y�(x, t) = φ(x, t) + ψ(x, T − t), (13)
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Numerical Method of Local Energy Decay 7

and

v�
j (x, t) = g j (x, t) + h j (x, T − t) for

(x, t) ∈ � × (0, T ) and 1 ≤ j ≤ m,

respectively. Note that the approximated state (13) satisfies the initial
conditions {

y�(x, 0) ≡ y�
0 = φ0 + ψ(T )

(y�)′(x, 0) ≡ y�
1 = φ1 − ψ ′(T )

(14)

which are approximations of the original ones (y0, y1).
At this point, it is important to notice that if the initial data (y0, y1)

are regular enough, then, thanks to the continuity of the trace operator,
it is easy to prove a continuous dependence of the family of controls
{v j}1≤ j≤m with respect to the initial data (see [1, theorem 2.1] for the
case of the wave equation). Numerically this means that the order of
approximation of the controls v�

j is the same as the one of the initial data
(y�

0, y�
1).

The convergence of this algorithm is a consequence of Theorem 1.
Next, we would like to make a few comments on the main advantages and

disadvantages of the proposed method:

� The key point of the method is estimate (4). In the examples that we have
considered, this estimate holds whenever the initial data for the extended
problems have a compact support. It seems that this property is, in general,
true for linear, 2k-order evolution systems.

Apart from this, we see:
� The main advantage of this numerical scheme is its simplicity. The

controllability problem is solved with exactly the same techniques as the
ones used for solving initial-value problems. In fact, as we will see in
Section 3, in some simple cases explicit formulae for the solutions are
available. In this respect, the convergence of the algorithm is ensured and
therefore we do not have to be concerned with the presence of undesirable
high-frequency, spurious, numerical solutions because they do not appear
here.

� The method seems to be very general in the sense that it could be applied
for general linear, time-reversible, second-order evolution systems in any
dimension.

� The numerical implementation of the algorithm is easy and provides at the
same time numerical approximations for both the state and the controls.

As for disadvantages:
� Although in simple geometries the method can be applied to controllability

problems with controls acting on a small part of the boundary, for more
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8 P. Pedregal et al.

involved geometries the method leads to controls supported everywhere on
the boundary.

� A second drawback is related to the optimal time of controllability. In the
proposed method, the convergence of the algorithm depends on the time
for which estimate (4) holds with a constant C(T) such that C(T) < 1.
In some cases, it could be difficult to find out this optimal constant and
therefore the minimal time of controllability. However, this seems not to be
a big problem. As indicated in [1, p. 200], if we are able to show that for
the minimal time of controllability, say T0, the operator K T 0 is compact
(which in general is not so difficult to prove) and LT 0 is injective, then this
obstacle is overcome. At least, for the examples that we will consider in
Section 3, there is a numerical evidence that this is so.

3. Numerical simulations

In this section, we present several numerical experiments to illustrate the
excellent performance of the scheme introduced in the preceding section.

In the four examples that follow, we consider a first-order approximation
of the operator L−1

T as described in (12). This reduces to a minimum the
computational requirements needed to implement the algorithm and the results
of the numerical tests are rather acceptable. Indeed, the Cauchy problems
associated with the first three examples are solved using explicit formulae
for the solutions, and thereby the computational cost basically consists in
the numerical computation of a few integrals. More interesting is the plate
equation example for which we do not have a solution in closed form. The
corresponding Cauchy problem is then solved in a standard way with the help
of the Fast Fourier Transform (FFT). Later on, we will discuss a bit more in
detail the implication of this in the computational cost of the algorithm.

Finally, the computations of this section have been performed in a PC with
CPU 2.66 GHz and 1.00 GB of RAM. We have used the MATLAB Toolbox
and double precision.

3.1. The Klein–Gordon equation

Consider the 1D system


y′′ − yxx + y = 0 in (0, 1) × (0, T )

y(x, 0) = y0(x), y′(x, 0) = y1(x) in (0, 1)

y(0, t) = 0, y(1, t) = v(t) for 0 ≤ t ≤ T,

(15)

where the control v(t) only acts at the extreme x = 1.
It is well-known ([12, p. 479]) that for regular initial data (ȳ0, ȳ1), the

solution of the Cauchy problem
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Numerical Method of Local Energy Decay 9

{
ȳ′′ − ȳxx + ȳ = 0 in R × R

ȳ(x, 0) = ȳ0(x), ȳ′(x, 0) = ȳ1(x) in R
(16)

is given by

ȳ(x, t) = ȳ0(x − t) + ȳ0(x + t)

2

+ 1

2

∫ x+t

x−t
ȳ1(ξ )J0(

√
t2 − (x − ξ )2) dξ

− t

2

∫ x+t

x−t
ȳ0(ξ )

J1(
√

t2 − (x − ξ )2)√
t2 − (x − ξ )2

dξ,

J0 and J1 being the Bessel functions of order zero and one, respectively. From
this, it follows that if the initial data (ȳ0, ȳ1) are given by

ȳ0(x) =




y0(x), 0 ≤ x ≤ 1

−y0(−x), −1 ≤ x ≤ 0,

0, else

ȳ1(x) =




y1(x), 0 ≤ x ≤ 1

−y1(−x), −1 ≤ x ≤ 0

0, else

(17)

then the restriction of ȳ to [0, 1] solves (15) with v(t) = ȳ(1, t) for t > 0.
Moreover, due to the nice asymptotic behavior of the Bessel functions [13,

theorem 5.1, p. 139], it is not so hard to show that (4) holds for initial data (y0,
y1), for instance in Hr × Hr−1, with r ≥ 2, and for T large enough.

Now consider the initial data

y0(x) =
{

16x3, 0 ≤ x ≤ 0.5

16(1 − x)3, 0.5 ≤ x ≤ 1
, y1(x) = 0.

The same initial data set was considered in [7] for the case of the wave
equation. Figure 1 displays the results obtained for the state (y(x , t), y′(x , t))
after the application of our algorithm for T = 2.5 and 4, respectively. The
computations of the integrals appearing in the process, including the integral
formulae for the Bessel functions, have been carried out with Simpson’s rule.
We have used a mesh size h = 0.02.

Figure 2 shows the controls for T = 2.5 and 4. As we can see, system (15)
dissipates its energy mainly in the time interval [0, 2].

Finally, Table 1 presents the results for the discrete L∞-norm of the
difference between the initial data (y0, y1) and the approximated ones (y∗

0, y∗
1)

as given by (14), and at different times.
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Figure 1. Pictures for the states y(x, t) (left-hand panels) and y′(x, t) (right-hand panels)
corresponding to system (15) for T = 2.5 (first row) and T = 4 (second row).

3.2. The Euler–Bernoulli beam equation

In this subsection, we consider the following control system for the
Euler–Bernoulli beam equation:




y′′ + yxxxx = 0 in (0, 1) × (0, T )

y(x, 0) = y0(x), y′(x, 0) = y1(x) in (0, 1)

y(0, t) = yxx (0, t) = 0 for 0 ≤ t ≤ T

y(1, t) = v1(t), yxx (1, t) = v2(t) for 0 ≤ t ≤ T,

(18)

where now we have two controls v1, v2 acting at the extreme x = 1. The goal
is to choose these controls in such a way that

(y(T ), y′(T )) = (0, 0) in (0, 1).
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Figure 2. Pictures for the control v(t) for the Klein-Gordon system corresponding to T =
2.5 (left-hand panel) and T = 4 (right-hand panel).

Table 1
Comparison Table for the Error between the Original Initial Data Set and the

Approximated One for System (15) at Different Times

T ‖y0 − y∗
0‖∞ ‖y1 − y∗

1‖∞

2.5 6.7 × 10−3 2.2 × 10−3

4 1.1 × 10−4 2.2 × 10−3

6 1.7 × 10−5 9.6 × 10−5

We proceed analogously to the Klein–Gordon system and therefore consider
the initial-value problem{

ȳ′′ + ȳxxxx = 0 in R × R

ȳ(x, 0) = ȳ0(x), ȳ′(x, 0) = ȳ1(x) in R,
(19)

the initial data (ȳ0, ȳ1) being defined as in (17). Using the Fourier transform
(see [14, pp. 23–24]), the solution of (19) can be written explicitly as

ȳ(x, t) = 1

2
√

π t

∫ 1

−1
ȳ0(ξ ) cos

(
(x − ξ )2

4t
− π

4

)
dξ

+ 1

2π

∫ 1

−1
ȳ1(ξ )

{
π (x − ξ )

(
S

(
x − ξ√

2π t

)
− C

(
x − ξ√

2π t

))

+ 1√
π t

sin

(
(x − ξ )2

4t
+ π

4

)}
dξ,
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12 P. Pedregal et al.

where

S(x) = 1√
2π

∫ x

0
s−1/2 sin s ds and C(x) = 1√

2π

∫ x

0
s−1/2 cos s ds.

As before, the restriction of ȳ to the interval [0, 1] is a solution of (18) with
v1(t) = ȳ(1, t) and v2(t) = ȳxx (1, t). Moreover, it is not hard to show that for
p = 0, 1, 2, 3 and t > 0 there exists a constant K = K (p, t) > 0, with
K (p, t) ↘ 0 as t → ∞, such that

∣∣∣∣∂ p y(x, t)

∂x p

∣∣∣∣ ≤ K (p, t)
(‖y0‖2

H 3(0,1) + ‖y1‖2
H 1(0,1)

)
.

From this, one deduces (4) in X = H 3(0, 1) × H 1(0, 1) for T large enough. It
is however well-known [15] that the exact controllability condition (2) holds
for all T > 0.

Consider the simple initial data

y0(x) = sin(πx), y1(x) = 0.

Figures 3 and 4 show the pictures for the states (y(x , t), y′(x , t)) and controls
(v1(t), v2(t)), respectively, for T = 2 and T = 4.

Finally, Table 2 displays the results for the error in the discrete L∞−norm
of the approximation of the initial data.

3.3. The wave equation

In this subsection, we focus on the wave equation in 2D. Although the 1D case
has received a lot of attention in recent years, we do not treat it here because
this case is very simple. In fact, explicit formulae for the controls are available
(see for instance [16, p. 542]). The same holds for the 3D case thanks to
Huyghens’ principle [1].

Let � ≡ R1 = (0, 1)2 be the unit square. We split the boundary of � into
two parts

�0 = {(0, s) ∈ R
2 : 0 ≤ s < 1, } ∪ {(s, 0) ∈ R

2 : 0 ≤ s < 1}

and

�1 = {(1, s) ∈ R
2 : 0 < s ≤ 1, } ∪ {(s, 1) ∈ R

2 : 0 < s ≤ 1}.

Our main goal will be to compute the boundary control v : �1 → R such that
for some fixed time T > T0 = 2

√
2 (the minimal time of controllability) the

solution of system
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Figure 3. Pictures for the states y(x, t) (left-hand panels) and y′(x, t) (right-hand panels)
corresponding to T = 2 (first row) and T = 4 (second row).




y′′ − �y = 0, in Q = � × (0, T )

y = 0, on �0 = �0 × [0, T ]

y = v, on �1 = �1 × [0, T ]

y(0) = y0, y′(0) = y1 in �

(20)

satisfies the exact controllability condition (2). At this point, we notice that
in order for the exact controllability condition (2) to hold it is necessary to
impose some geometrical conditions on the boundary (see for instance [17]).
Our choice of the boundary control region �1 fulfills such conditions.

We begin by extending the initial data (y0, y1) to all of R
2. To this end,

consider the rectangles

R2 = (−1, 0) × (0, 1), R3 = (−1, 0) × (−1, 0) and R4 = (0, 1) × (−1, 0)
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Figure 4. Pictures for the controls v1(t) (left-hand panels) and v2(t) (right-hand panels)
corresponding to T = 2 (first row) and T = 4 (second row).

Table 2
Values of the Error between the Original Initial Data Set and the

Approximated One for System (18) at Different Times

T ‖y0 − y∗
0‖∞ ‖y1 − y∗

1‖∞

0.5 7.8 × 10−3 2.3 × 10−2

2 7.1 × 10−4 2.1 × 10−4

4 1.1 × 10−4 1.9 × 10−5

and denote

R =
4⋃

i=1

Ri .
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Numerical Method of Local Energy Decay 15

Then, we introduce the functions

ȳ0(x1, x2) =




y0(x1, x2), (x1, x2) ∈ R1

−y0(−x1, x2), (x1, x2) ∈ R2

y0(−x1, −x2), (x1, x2) ∈ R3

−y0(x1, −x2), (x1, x2) ∈ R4

0, else

and

ȳ1(x1, x2) =




y1(x1, x2), (x1, x2) ∈ R1

−y1(−x1, x2), (x1, x2) ∈ R2

y1(−x1, −x2), (x1, x2) ∈ R3

−y1(x1, −x2), (x1, x2) ∈ R4

0, else.

With these new initial conditions consider the Cauchy problem

{
ȳ′′ − �ȳ = 0, in R

2 × (0, T )

ȳ(0) = ȳ0, ȳ′(0) = ȳ1 in R
2.

For t > T 0 and x ∈ �, because (ȳ0, ȳ1) vanish outside R, we can use Poisson’s
formula to write down the solution of this system in the form

ȳ(x, t) = 1

2π

∂

∂t

∫
R

ȳ0(ξ ) dξ√
t2 − |x − ξ |2

+ 1

2π

∫
R

ȳ1(ξ ) dξ√
t2 − |x − ξ |2

. (21)

From this, it can be proved both the estimate (4) for T large enough, and the
fact that the restriction of ȳ to � solves (20) for v = ȳ|�1 .

Finally, consider the initial data

y0(x1, x2) = 10 sin(πx1) sin(πx2), y1(x1, x2) = 0, (x1, x2) ∈ �.

Figure 5 shows the animation of the state y(x, t) for 0 ≤ T ≤ 4. Figure 6
displays the picture of the control at the edge x = 1. We have also used
Simpson’s rule to compute the integrals appearing in (21). The numerical errors
are similar to the two preceding cases.
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Figure 5. Animation of the state y(x , t k) from left- to right-hand panels and from top to
bottom panels for t k = 0, 0.2, 0.6, 1.4, 2, 2.8, 3.6, 4.
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Figure 6. Picture of the control at the edge x = 1 during the time interval 0 ≤ T ≤ 4.

3.4. The plate equation

Let � = {(x1, x2) ∈ R
2 : x2

1 + x2
2 < 1} be the disk of radius 1 centered at the

origin, and consider the control system for the Kirchhoff plate equation


y′′(x, t) + �2 y(x, t) = 0, t > 0, x ∈ �

(y(x, 0), y′(x, 0)) = (y0(x), y1(x)), x ∈ �

y(x, t) = u1(x, t), t ≥ 0, x ∈ ∂�

∂y

∂ν
(x, t) = u2(x, t), t ≥ 0, x ∈ ∂�,

(22)

where now the controls u1 and u2 act on all of the boundary in the
form of deflection and slope of deflection in the normal direction to the
boundary.

We consider the initial conditions

y0(x1, x2) = 0.5e−50((x1−0.125)2+(x2−0.125)2)X�(x1, x2),

y1(x1, x2) = 0, (x1, x2) ∈ �,

and solve numerically (22) following the method described in the preceding
section. The initial conditions for the associated Cauchy problem have been
obtained from (y0, y1) by extending these by zero outside �. Then, the
mentioned Cauchy problem has been solved using a FFT algorithm in an
standard way. Precisely, following the notation of [18, chapter 5], we have taken
N = 1024 and L = 32 which provides a mesh size h = L/N = 0.0313 and
frequency resolution f r = 2π/L = 0.1963. The grossest of aliasing errors
have been removed by putting, as usual, K = N/8. The direct and inverse FFT
algorithms have been tested for functions for which the Fourier transforms are
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Figure 7. Animation of the state y(x , t k) from left- to right-hand panels and from top to
bottom panels for t k = 0, 0.05, 0.1, 0.15, 0.4, 0.5.

explicitly known leading to errors both in the discrete L∞ and L2 norms of the
order of 1.e − 14. In terms of time of computation, it requires about 7 s.

Figure 7 displays the animation of the state y(x, t) at different times and for
T = 0.5. In polar coordinates, we have used a mesh size �θ = 0.157 for the
angle, and �r = 0.1 for the radius.

Figure 8 shows the pictures for the controls. For computing the slope of
deflection control, we have used backward, first-order differences.



sapm˙406 SAM-new-XML.cls (1994/07/13 v1.2u Standard LaTeX document class) May 4, 2008 12:29

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

Numerical Method of Local Energy Decay 19

0
1

2
3

4
5

6

0

0.1

0.2

0.3

0.4

0.5
–0.1

–0.05

0

0.05

0.1

angletime 0
1

2
3

4
5

6

0

0.1

0.2

0.3

0.4

0.5
–0.5

0

0.5

angle
time

Figure 8. Pictures for the controls u1(t) (left-hand panel) and u2(t) (right-hand panel) for
0 ≤ t ≤ T and 0 ≤ θ ≤ 2π .

Finally, we would like to emphasize that some minor changes in the code are
needed to implement other type of boundary controls, for instance a bending
moment control.

4. Conclusions

It is well-known that the problem of the numerical computation of the boundary
exact control for the wave equation is extremely sensitive to the numerical
scheme used for this approximation. In fact, for the usual finite difference and
finite element schemes convergence is known to fail.

Based on a method by D. L. Russell, we have proposed in this work a
very simple algorithm for solving the problem of the numerical computation
of the boundary controls for linear, second order, time-reversible distributed
parameter systems. Convergence of the algorithm follows from the local energy
decay of the solutions of a suitable initial-value problem associated with the
original control system.

Although each of the four examples tested have been computed with a
first-order approximation of the operator L−1

T , an increase in the order of the
approximation of this operator, for instance to second-order, only requires a
recurrence in steps (a) and (b) of the numerical algorithm, which does not
increase the computational cost in a significant way.

One interesting remaining point is to analyze whether the controls provide
by the method presented here coincide with the ones that come from the HUM.
This can be proved for the 1D wave equation, and we suspect that the same
holds for more general situations. The numerical simulations presented in this
work may be useful for testing numerically this conjecture.
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