Favard theory for the adjoint equation and the recurrent Fredholm alternative

Rafael Obaya
University of Valladolid

Joint work with Juan Campos and Massimo Tarallo

Let us consider the nonhomogeneous linear differential equation in \mathbb{R}^{n}

$$
\begin{equation*}
x^{\prime}=A(t) x+f(t), \quad t \in \mathbb{R} \tag{1}
\end{equation*}
$$

where $A(t)$ and $f(t)$ are bounded and uniformly continuous.
We consider that the joint Hull $\Omega=H(A, f)$ is recurrent and we formulate (1) as a collective family

$$
\begin{equation*}
x^{\prime}=A(\omega \cdot t) x+f(\omega \cdot t), \quad t \in \mathbb{R}, \omega \in \Omega \tag{2}
\end{equation*}
$$

The solutions of (2) induce a continuous skew-product semiflow

$$
\begin{aligned}
\tau: \mathbb{R} \times \Omega \times \mathbb{R}^{n} & \rightarrow \Omega \times \mathbb{R}^{n} \\
(t, \omega, x) & \mapsto(\omega \cdot t, u(t, \omega, x))
\end{aligned}
$$

We ask for conditions that implies the existence of bounded solutions. These conditions are given in terms of the adjoint equation

$$
\begin{equation*}
x^{\prime}=-A^{T}(\omega \cdot t) x \tag{3}
\end{equation*}
$$

If $x(t)$ is a solution of (1) and $v(t)$ is a bounded solution of the adjoint equation (3) then

$$
\begin{aligned}
& \int_{0}^{t}<f(s), v(s)>d s= \\
& <x(s), v(s)>\left.\right|_{0} ^{t}-\int_{0}^{t}<v(s)+A^{T}(s) v(s), x(s)>d s= \\
& <x(t), v(t)>-<x(0), v(0)>
\end{aligned}
$$

Then a necesary condition for the existence of a bounded solution of (1) is that $<f, v>\in B P(\mathbb{R}, \mathbb{R})$ for every bounded solution v of (3). We refer to this property as the BP-condition.

We will prove that this condition will be sufficient in some cases. We first refer to linear homogeneous equations that satisfies the Favard separation condition $\left(F_{A}\right)$.

Given the homogeneous equation

$$
\begin{equation*}
x^{\prime}=A(\omega \cdot t) x, \quad \omega \in \Omega \tag{4}
\end{equation*}
$$

the condition $\left(F_{A}\right)$ holds if for every $\omega \in \Omega$ and every bounded solution $x(t)$ of $(4)_{\omega}$ one has $\inf _{t \in \mathbb{R}}|x(t)|>0$.
We denote

$$
\begin{aligned}
& \mathcal{B}=\left\{(\omega, x) \in \Omega \times \mathbb{R}^{n}\left|\sup _{t \in \mathbb{R}}\right| \phi(t, \omega) x \mid<\infty\right\} \quad \text { and } \\
& d(\omega)=\operatorname{dim}\left\{x \in \mathbb{R}^{n} \mid(\omega, x) \in \mathcal{B}\right\} .
\end{aligned}
$$

The function $d(\omega)$ i s discrete and non continuous. It has a residual invariant subset $\Omega_{F} \subset \Omega$ of points with minimum value $d(\omega)=d_{F}(A)$ (Favard dimension) for $\omega \in \Omega_{F}$ (minimum of d). $\left(F_{A}\right)$ holds if and only if $d(\omega)=d_{F}$ for every $\omega \in \Omega$.
Then \mathcal{B} is a continuous subbundle of $\Omega \times \mathbb{R}^{n}$.

Theorem 1

Let us assume that the nonhomogeneous equation (2) admits a bounded solution, then
(i) the equation (2) has a recurrent solution $x(t)=u\left(t, \omega_{0}, x_{0}\right)$ such that $H(x)$ is a minimal almost automorphic extension of (Ω, σ).
(ii) If $\left(F_{A}\right)$ holds, the equation (2) has a recurrent solution $x(t)=u\left(t, \omega_{0}, x_{0}\right)$ such that $H(x)$ is a copy of the base (Ω, σ).

In this context, several possible assertions can be analized:
(1) If $\left(F_{A}\right)$ holds then $\left(F_{A}^{*}\right)$ does.
(2) If $\left(F_{A}\right)$ and $\left(F_{A}^{*}\right)$ hold then $d_{F}(A)=d_{F}^{*}(A)$.
(3) If $\left(F_{A}\right)$ and $\left(F_{A}^{*}\right)$ hold and $d_{F}(A)=d_{F}^{*}(A)$ then the $B P$-condition is sufficient to obtain bounded solutions.

A second ingredient to give a positive answer to (3) is given in terms of the Sacker-Sell spectrum of A.
The spectrum $\sigma(A)$ is the set of the real λ 's for which the homogeneous equation

$$
x^{\prime}=[A(\omega \cdot t)-\lambda I] x
$$

does not admit exponential dichotomy on \mathbb{R}. This is always a nonempty compact set defined at most n adjoint closed intervals

$$
\sigma(A)=\left[a_{1}, b_{1}\right] \cup\left[a_{2}, b_{2}\right] \cup \ldots \cup\left[a_{m}, b_{m}\right], \quad m \leq n .
$$

We denote by $d_{S}(A)$ (Sacker-Sell dimension) the vectorial dimension of the subbundle associated to the spectral interval that contains 0 .
The bounded solutions are included in this subbundle, so we always have

$$
d_{F}(A) \leq d_{S}(A)
$$

The main theorems.

Theorem 2

Assume that $H(A, f)$ is minimal and $d_{F}(A)=d_{S}(A)$. Then $\left(F_{A}\right)$ and $\left(F_{A}^{*}\right)$ hold with $d_{F}(A)=d_{F}^{*}(A)$ and condition $B P$ is sufficient to obtain bounded solutions of the nonhomogeneous equation (2).

A comment is done about condition $B P$: when A and f are T-periodic the conclusions of the theorem are true even if $d_{F}(A)=d_{S}(A)$ is not satisfied. However our problem here is different: we try to obtain the best conclusions of every nonhomogeneous term. Next result shows that this difference is crucial.

Theorem 3

Assume $d_{S}(A) \leq 2$ and $\left(F_{A}\right)$ and $\left(F_{A}^{*}\right)$ hold. If condition $B P$ is sufficient to obtain bounded solutions of the nonhomogeneous equation (2) for every f such that $H(A, f)$ is minimal then $d_{F}(A)=d_{S}(A)$.

Other versions of the problem in the literature.

J. K. Hale, Ordinary differential equations, Wiley, (1969) posed this problem when $A(t)$ is purely periodic and $f(t)$ is almost-periodic (A-P for short).

Proposition 4

Let $A(t)$ be a continuous and periodic function. Assume that for every recurrent f, the nonhomogeneous equation (2) has a bounded solution if and only if the $B P$-condition holds then $d_{F}(A)=d_{S}(A)$.
K. J. Palmer, Exponential dichotomies and transversal homoclinic points, J. Diff. Eq., (1984).
He studies a close problem when $A(t)$ and $f(t)$ are just bounded and continuous assuming exponential dichotomy in \mathbb{R}^{+}and \mathbb{R}^{-}of the homogeneous linear equation.
P. Cieutat and A. Haraux, Exponential decay and existence of almost-periodic solution for some linear forced differential equations, Port. Math., (2002).
They consider $A(t), f(t)$ A-P functions, $A(t)$ with sign, for instance $A(t) \geq 0$. Here $A(t)$ is positive asymmetric and the sign is that of its symmetric part $S_{A}(t)=\frac{A(t)+A^{T}(t)}{2}$. They also assume that the antisymmetric part $K_{A}(t)=\frac{A(t)-A^{T}(t)}{2}$ is purely periodic. They prove that the nonhomogeneous equation has an A-P solution if and only if $\int_{0}^{t}<f(s), v(s)>d s$ is A-P for every A-P solution of the pair of conditions

$$
v^{\prime}=K_{A}(t) v, \quad S_{A}(t) v(t)=0
$$

Theorem 5

Assume that $A(t)$ and $f(t)$ are jointly recurrent and the matrix $A(t)$ has sign. Then $d_{F}(A)=d_{S}(A)$ and the nonhomogeneous equation admits bounded solution if and only if $B P$ holds.

Robustness of the $B P$-condition.

R. Ortega, M. Tarallo, Almost-periodic equations and conditions of Ambrosetti-Prodi type, Math. Proc. Camb. Phil. Soc., (2003). They consider the recurrent damped Hill equation

$$
x^{\prime \prime}+c x^{\prime}+a(t) x=g(t)
$$

with $c \neq 0, a(t)$ and $g(t)$ are A-P, whose homogeneous part is disconjugated in a strong sense. They show that $B P$-condition implies the existence of bounded A-P solutions.
But here is possible to prove that $d_{F}(A)=d_{S}(A)=1$.
We need a preliminary result that provides the correct formulation of the $B P$-condition, assuming $\left(F_{A}^{*}\right)$.

Lemma 6

Assume that Ω is minimal and $\left(F_{A}^{*}\right)$ holds. If

$$
<f_{\omega}, \phi_{A}^{*}(\cdot, \omega) \xi>\in B P \quad \forall \xi \in \mathcal{B}_{\omega}^{*}(A)
$$

holds for some $\omega_{0} \in \Omega$. Then it holds for every $\omega \in \Omega$.

The Cauchy operator of the adjoint equation is

$$
\Phi_{A}^{*}(t, \omega)=\phi_{-A^{T}}(t, \omega)=\left\{\phi_{A}(t, \omega)^{T}\right\}^{-1} .
$$

Using the minimality we find $\omega_{0} \cdot t_{n}=\omega$. The map

$$
L: \mathcal{B}_{\omega_{0}}^{*}(A) \rightarrow \mathcal{B}_{\omega}^{*}(A), \quad \xi_{0} \mapsto \lim _{n \rightarrow \infty} \phi_{A}^{*}\left(t_{n}, \omega_{0}\right) \xi_{0}
$$

is an isomorphism. Take $\xi_{0}=L^{-1} \xi$, by hipothesis

$$
\left|\int_{0}^{t}<f\left(\omega_{0} \cdot s\right), \phi_{A}^{*}\left(s, \omega_{0}\right) \xi_{0}>d s\right| \leq M \quad \text { for every } t \in \mathbb{R}
$$

The cocycle identity provides

$$
\begin{aligned}
& \left|\int_{0}^{t}<f\left(\left(\omega_{0} \cdot t_{n}\right) \cdot s\right), \phi_{A}^{*}\left(s, \omega_{0} \cdot t_{n}\right) \phi_{A}^{*}\left(t_{n}, \omega_{0}\right) \xi_{0}>d s\right| \\
& =\left|\int_{0}^{t}<f\left(\omega_{0} \cdot\left(s+t_{n}\right)\right), \phi_{A}^{*}\left(s+t_{n}, \omega_{0}\right) \xi_{0}>d s\right| \\
& =\mid \int_{0}^{t+t_{n}}<f\left(\omega_{0} \cdot s\right), \phi_{A}^{*}\left(s, \omega_{0}\right) \xi_{0}>d s \\
& \quad-\int_{0}^{t}<f\left(\omega_{0} \cdot s\right), \phi_{A}^{*}\left(s, \omega_{0}\right) \xi_{0}>d s \mid \leq 2 M
\end{aligned}
$$

and hence

$$
\left|\int_{0}^{t}<f(\omega \cdot s), \phi_{A}^{*}(s, \omega) \xi>d s\right| \leq 2 M
$$

for every $\omega \in \Omega$ and $t \in \mathbb{R}$.
R. J. Sacker, G. R. Sell, Existence of dichotomies and invariant splittings for linear differential systems III, J. Diff. Eq., (1976). They assume that $\left(F_{A}\right)$ holds. Thus $\mathcal{B}(A)$ is an invariant subbundle.
A flow can be defined in $\mathcal{B}(A)^{\perp}$ by projecting the operator ϕ_{A}. The second assumption is that this induced flow has not bounded solutions but the trivial one. Sacker and Sell proves that these assumptions are equivalent to the existence of a trichotomy. That is, the stable and unstable fibers spaces $\mathcal{U}(A)$ and $\mathcal{S}(A)$ are also subbundles and moreover

$$
\Omega \times \mathbb{R}^{n}=\mathcal{U}(A) \oplus \mathcal{B}(A) \oplus \mathcal{S}(A)
$$

This implies $d_{F}=d_{S}$. The converse is consequence of the Spectral Theorem proved in
R. J. Sacker, G. R. Sell, A spectral theory for linear differential systems, J. Diff. Eq., (1978).

Proposition 7

Let us assume $d_{F}(A)=n$. The $\sigma(A)=\{0\}$ and $\left(F_{A}^{*}\right)$ holds with $d_{F}^{*}(A)=n$. If the $B P$-condition is satisfied for a jointly recurrent term f, the nonhomogeneous equation admit bounded solutions.

Let us fix $\omega \in \Omega$. There exist constants $0<m \leq M<+\infty$ such that

$$
\begin{aligned}
& m|\xi| \leq\left|\phi_{A}(t, \omega) \xi\right| \leq M|\xi| \quad \text { and } \\
& \frac{1}{M}|\xi| \leq\left|\phi_{A}^{*}(t, \omega) \xi\right| \leq \frac{1}{m}|\xi|
\end{aligned}
$$

for every $\xi \in \mathbb{R}^{n}$ and $t \in \mathbb{R}$. In particular $\left(F_{A}^{*}\right)$ holds with $d_{F}^{*}(A)=n$.
Assume now that $B P$ is satisfied and observe that

$$
<\int_{0}^{t} \phi_{A}^{-1}(s, \omega) f(\omega \cdot s) d s, \xi>=\int_{0}^{t}<f(\omega \cdot s), \phi_{A}^{*}(s, \omega) \xi>d s
$$

for every $\xi \in \mathbb{R}^{n}$ and $t \in \mathbb{R}$. The left integral is bounded in $t \in \mathbb{R}$

Change of variables and Fredholm alternative.

It requires some consecutive steps. The first step is consider an epimorphism of minimal flows $\varphi: \Theta \rightarrow \Omega$ and the new equation

$$
\begin{equation*}
z^{\prime}=\mathrm{A} \circ \varphi(\theta \cdot t) z, \quad \theta \in \Theta \tag{5}
\end{equation*}
$$

We say that $\mathcal{A}=A \circ \varphi$ extends A and write $\mathcal{A} \succ A$ and $\Theta \succ \Omega$. A Lyapunov-Perron transformation on Θ is a map $Q \in C(\Theta, G L(n))$ such that $D Q$ exists and is also continuous. The change of variables $z=Q(\theta \cdot t) u$ transform (5) into

$$
u^{\prime}=E(\theta \cdot t) u
$$

where $E(\theta)=Q(\theta)^{-1}\{A(\varphi(\theta)) Q(\theta)-D Q(\theta)\} . E$ is called a minimal kinematic extension of A and write $E>A$. This is the second step of the process.
When φ is an isomorphism we talk about kinematic similarity writing $E \sim A$.

Definition 8

We say that $A \in C(\Omega, \mathcal{L}(n))$ has the property $\left(C_{A}\right)$ when whatever $f \in C\left(\Omega, \mathbb{R}^{n}\right)$ we take that if the condition

$$
\begin{equation*}
<f_{\omega}, \phi_{A}^{*}(\cdot, \omega) \xi>\in B P(\mathbb{R}, \mathbb{R}), \quad \forall \xi \in \mathcal{B}_{\omega}^{*}(A) \tag{6}
\end{equation*}
$$

is satisfied for every $\omega \in \Omega$, then the equation

$$
\begin{equation*}
x^{\prime}=A(\omega \cdot t) x+f(\omega \cdot t) \tag{7}
\end{equation*}
$$

admits bounded solutions for every $\omega \in \Omega$.

Definition 9

Let (Ω, σ) be a minimal flow and $A \in C(\Omega, \mathcal{L}(n))$. We say that A has the recurrent Fredholm Alternative property when
(a) Conditions $\left(F_{A}\right)$ and $\left(F_{A}^{*}\right)$ are satisfied.
(b) Every minimal extension $\mathcal{A} \succ A$ satisfies $\left(C_{\mathcal{A}}\right)$.

Lemma 10

Assume $\mathcal{A} \succ A$. If $\left(C_{\mathcal{A}}\right)$ holds then $\left(C_{A}\right)$ holds too.
Write $\mathcal{A}=A \circ \varphi$ where $\varphi: \Theta \rightarrow \Omega$ is an epimorphism. Take $f \in C\left(\Omega, \mathbb{R}^{n}\right)$ and suppose that $B P$-condition (6) is satisfied. Since $f \circ \varphi \in C\left(\Theta, \mathbb{R}^{n}\right)$ we are in the scope of condition $\left(C_{\mathcal{A}}\right)$ to conclude set $\varphi(\theta)=\omega$, then

$$
\begin{aligned}
& (f \circ \varphi)_{\theta}=f_{\omega}, \quad \phi_{A \circ \varphi}^{*}(t, \theta)=\phi_{A}^{*}(t, \omega), \quad \text { and } \\
& z^{\prime}=(\mathrm{A} \circ \varphi)(\theta \cdot t) z+(f \circ \varphi)(\theta \cdot t)
\end{aligned}
$$

is just our nonhomogeneous equation.

Lemma 11

Assume that $E \sim A$. Then $\left(C_{E}\right)$ is equivalent to $\left(C_{A}\right)$.
Let $\varphi: \Theta \rightarrow \Omega$ be an isomorphism and $Q: \mathbb{R} \rightarrow G L(n)$ the Lyapunov-Perron transformation. Condition $\left(C_{E}\right)$ refers to the existence of bounded solutions of

$$
\begin{equation*}
u^{\prime}=E(\theta \cdot t) u+g(\theta \cdot t) \tag{8}
\end{equation*}
$$

Take f with $g(\theta)=Q(\theta)^{-1} f(\varphi(\theta))$ and consider ω with $\varphi(\theta)=\omega$. The change of variables $x=Q(\theta \cdot t) u$ takes (7) into (8) and defines a bijection between their bounded solutions. The change $y=Q^{*}(\theta \cdot t) v$ with $Q^{*}(\omega)=\left(Q(\omega)^{-1}\right)^{T}$. Moreover

$$
\begin{aligned}
<g(\theta \cdot t), v(t)> & =<Q(\theta \cdot t)^{-1} f(\varphi(\theta \cdot t)), v(t)> \\
& =<f(\omega \cdot t), Q^{*}(\theta \cdot t) v(t)> \\
& =<f(\omega \cdot t), y(t)>
\end{aligned}
$$

Proposition 11

Let $E>A$ be a given minimal kinematic extension. The two following facts are equivalent
(1) every minimal extension $\mathcal{A} \succ A$ satisfies $\left(C_{\mathcal{A}}\right)$
(2) every minimal extension $\mathcal{E} \succ E$ satisfies $\left(C_{\mathcal{E}}\right)$

Let $\varphi: \Theta \rightarrow \Omega$ be the epimorphism underlying $B>A$ and $Q: \Omega \rightarrow G L(n)$ the Lyapunov-Perron transformation allowing to write E from A.
(1) $\Rightarrow(2)$ Write $\mathcal{E}=E \circ \psi$ with $\psi: \Sigma \rightarrow \Theta$ an epimorphism. Then

$$
\mathcal{E}=E \circ \psi \sim(A \circ \varphi) \circ \psi=A \circ(\varphi \circ \psi)=\mathcal{A} \succ A .
$$

$(2) \Rightarrow(1)$ Write $\mathcal{A}=A \circ \psi$ where $\psi: \Sigma \rightarrow \Omega$ is an epimorphism.
Consider $\Theta \times \Sigma$ and denote by p and q the projections on the factors. The subset $\{(\theta, \sigma) \in \Theta \times \Sigma \mid \varphi(\theta)=\psi(\sigma)\}$ contains a minimal set M. Moreover $\varphi \circ p=\psi \circ q$ holds in M. Then
$\mathcal{E}=E \circ p \sim(A \circ \varphi) \circ p=A \circ(\varphi \circ p)=(A \circ \psi) \circ q=\mathcal{A} \circ q \succ \mathcal{A}$ and the conclusion follows from the previous Lemma.

Theorem 12

Assume that Ω is minimal and $A \in C(\Omega, \mathcal{L}(n))$. If

$$
d_{F}(A)=d_{S}(A)
$$

then A has the recurrent Fredholm Alternative property and $d_{F}\left(A^{*}\right)=d_{S}\left(A^{*}\right)$

We can consider $0<d_{S}(A)=m<n$ and $k=n-m$. Let $\mathcal{V}(A)$ be the spectral subbundle corresponding to the spectral containing 0 . That is $\mathcal{B}(A)=\mathcal{V}(A)$. Consider now the SS-spectral decomposition

$$
\Omega \times \mathbb{R}^{n}=\mathcal{V}(A) \oplus \mathcal{W}(A)
$$

where $\mathcal{W}(A)$ is the direct sum of the direct subbundles corresponding to the spectral intervals in $\sigma(A)-\{0\}$. The papers K. J. Palmer, On the reducibility of almost-periodic systems of linear systems, J. Diff. Eq., (1980)
R. Ellis, R. A. Johnson, Topological dynamics and linear differential systems, J. Diff. Eq., (1982)

Show that $\mathcal{V}(A)$ and $\mathcal{W}(A)$ can be untwisted on a minimal flow by a kinetic extension $E>A$. That is E is block-diagonal

$$
E=\left[\begin{array}{cr}
E_{\mathcal{V}} & 0 \\
0 & E_{\mathcal{W}}
\end{array}\right]
$$

with blocks $E_{\mathcal{V}}$ and $E_{\mathcal{W}}$ having dimensions m and k respectively. The solutions of the two uncoupled system

$$
\left\{\begin{array}{l}
v^{\prime}=E_{\mathcal{V}}(\theta \cdot t) v \tag{9}\\
w^{\prime}=E_{\mathcal{W}}(\theta \cdot t) w
\end{array}\right.
$$

are (modulo the change of variables) the solutions of the original systems that lie in $\mathcal{V}(A)$ and $\mathcal{W}(A)$ respectively. We have

$$
d_{F}\left(E_{\mathcal{V}}\right)=m, \quad 0 \text { is not in } \sigma\left(E_{\mathcal{W}}\right)
$$

We consider a flow epimorphism $\Psi: \Sigma \rightarrow \Theta$ and $\mathcal{E}=E \circ \Psi>E$ defines a linear system similar to (9). Thus is sufficient to prove the $\left(C_{E}\right)$ property for (9) with adjoint equation

$$
\left\{\begin{array}{l}
v^{\prime}=-E_{\mathcal{V}}(\theta t) v \tag{10}\\
w^{\prime}=-E_{\mathcal{W}}(\theta t) w
\end{array}\right.
$$

A solution of (10) is bounded if and only if v is bounded and $w=0$. we have $d_{F}\left(E_{\mathcal{V}}\right)=m=d_{F}^{*}\left(E_{\mathcal{V}}\right)$, thus $\left(F_{E}^{*}\right)$ holds with dimension m. Since these conditions are invariant by kinematic extension also $\left(F_{A}^{*}\right)$ holds with $d_{F}^{*}(A)=m$.
Consider $f \in C\left(\Theta, R^{n}\right)$ and decompose it as $f=(g, h)$. The BP-condition

$$
<g_{\theta}, \phi_{E_{\mathcal{V}}}^{*}(\cdot, \theta) \xi>\in B P(\mathbb{R}, \mathbb{R}), \quad \forall \xi \in \mathcal{B}_{\theta}^{*}(A)
$$

is now equivalent to the existence of bounded solutions of $v^{\prime}=E_{\mathcal{W}}(\theta t) v+g(\theta t)$. We denote by v one of these solutions and take W, the unique bounded solution of $w^{\prime}=E_{\mathcal{W}}(\theta t)+h(\theta t)$. Then (v, w) is bounded solution of the nonhomogeneous equation, concluding the proof of $\left(C_{E}\right)$. A notion of A-P Fredholm Alternative can be introduced when (Ω, σ) is an A-P flow and f is A-P. these theorems assure the existence of A-P solutions, however their proof is outsside of the A-P framework. The reason is that the extension $\Theta>\Omega$, where A diagonalizes by blocks, may fail to be A-P even if (Ω, σ) is.
R. A. Johnson, On a Floquet theory for almost-periodic two-dimension linear systems, J. Diff. Eq., (1980),
R. A. Johnson, K. Palmer, G. R. Sell, Ergodic properties of linear dynamical systems, SIAM J. Math. Anal., (1981)
proves the existence of a kinematic extension of $A, E>A$ such that

$$
x^{\prime}=E(\omega \cdot t) x
$$

has a triangular form. For $n=2$ we consider

$$
\left[\begin{array}{l}
x_{1}^{\prime} \tag{11}\\
x_{2}^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
a(\omega \cdot t) & b(\omega \cdot t) \\
0 & c(\omega \cdot t)
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]
$$

with adjoint equation

$$
\left[\begin{array}{l}
y_{1}^{\prime} \tag{12}\\
y_{2}^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
-a(\omega \cdot t) & 0 \\
-b(\omega \cdot t) & -c(\omega \cdot t)
\end{array}\right]\left[\begin{array}{l}
y_{1} \\
y_{2}
\end{array}\right]
$$

Lemma 13

Conditions $\left(F_{E}\right)$ and $\left(F_{E}{ }^{*}\right)$ hold simultaneously if and only if $\left(F_{a}\right)$ and $\left(F_{c}\right)$ do the same. In this case $d_{F}^{*}(E)=d_{F}(E)$.
$\left(F_{a}\right)$ and $\left(F_{c}\right)$ refer to the one-dimensional systems $x^{\prime}=a(\omega \cdot t) x$ and $x^{\prime}=c(\omega \cdot t) x$.

Theorem 14

Assume that $0 \in \sigma(E)$. The conditions $\left(F_{E}\right)$ and $\left(F_{E}^{*}\right)$ are jointly satisfied if and only if E is kineticaly similar on Ω to either

$$
A_{*}=\left[\begin{array}{cc}
a_{*} & 0 \tag{13}\\
0 & 0
\end{array}\right] \quad \text { with } 0 \notin \sigma a_{*}
$$

or to

$$
E_{*}=\left[\begin{array}{cc}
0 & b_{*} \tag{14}\\
0 & 0
\end{array}\right]
$$

where a_{*} and $b_{*} \in C(\Omega, \mathbb{R})$.
It is clear that A_{*} and E_{*} satisfy the direct and adjoint Favard conditions. Assume now that $\left(F_{E}\right)$ and $\left(F_{E}^{*}\right)$ are satisfied and hence also $\left(F_{a}\right)$ and $\left(F_{c}\right)$.

Since $0 \in \sigma(E)=\sigma(a) \cup \sigma(c)$ we can distinguish three cases:
(1) If $0 \notin \sigma(a), c \in B P(\Omega)$ it is possible to construct \hat{c}, $p \in C(\Omega)$ with

$$
D \hat{c}=c, \quad D p=a p+b e^{\hat{c}}
$$

A direct computation shows that the change of variables $x_{1}=u_{1}+p(\omega \cdot t) u_{2}, x_{2}=e^{\hat{c}(\omega \cdot t)} u_{2}$ takes (11) into (13) with $a_{*}=a$.
(2) If $a \in B P(\Omega), 0 \notin \sigma(c)$ the previous arguments can be applied to the adjoint system. After swapping the two components and taking the adjoint we deduce that E is kinetically similar to A_{*} with $a_{*}=c$.
(3) If $a \in B P(\Omega), c \in B P(\Omega)$ the diagonal change of variables $x_{1}=e^{\hat{a}(\omega \cdot t)} u_{1}$ and $x_{2}=e^{\hat{c}(\omega \cdot t)} u_{2}$ takes (11) into (14) with $b_{*}=b e^{\hat{c}-\hat{a}}$.

Proposition 15

Let Ω minimal and A_{*} given by (13), then

$$
\sigma\left(A_{*}\right)=\{0\} \cup \sigma\left(a_{*}\right), \quad d_{F}\left(A_{*}\right)=1=d_{S}\left(A_{*}\right)
$$

and A_{*} has the recurrent Fredholm Alternative property.

Proposition 16

Let Ω be minimal and E_{*} given by (14), then

$$
\sigma\left(E_{*}\right)=\{0\}, d_{S}\left(E_{*}\right)=2, d_{F}\left(E_{*}\right)= \begin{cases}1 & \text { if } b_{*} \notin B P(\Omega) \\ 2 & \text { if } b_{*} \in B P(\Omega)\end{cases}
$$

and E_{*} has the recurrent Fredholm Alternative property if and only if $b_{*} \in B P(\Omega)$.

Note that $\sigma\left(E_{*}\right)=0$ and $d_{S}\left(E_{*}\right)=2$. The general solution of (14) $x_{1}=x_{10}+x_{20} \int_{0}^{t} b_{*}(\omega \cdot s) d s, x_{2}=x_{20}$ and $y_{1}=y_{10}, y_{2}=y_{20}-y_{10} \int_{0}^{t} b_{*}(\omega \cdot s) d s$ for the adjoint equation.
The theorem applies when $b_{*} \in B P(\Omega)$. We next consider the case $b_{*} \notin B P(\Omega)$. Given $f, g \in C(\Omega)$ and the equations

$$
x_{1}^{\prime}=b_{*}(\omega \cdot t) x_{2}+f(\omega \cdot t), \quad x_{2}^{\prime}=g(\omega \cdot t)
$$

Here $g \in B P(\Omega)$ is the $B P$-condition. Suppose it and take $\hat{g} \in C(\Omega)$ with $D \hat{g}=g$. Then $x_{2}=x_{20}+\hat{g}(\omega \cdot t)$ and hence

$$
x_{1}^{\prime}=b\left(\omega_{*}\right)\left\{x_{2}+\hat{g}(\omega \cdot t)\right\}+f(\omega \cdot t)
$$

and the existence of bounded solutions writes as

$$
b_{*}\left(x_{20}+g^{\wedge}\right)+f \in B P(\Omega)
$$

for suitable x_{20}. This can be satisfied when Ω is periodic. When Ω is aperiodic and $g=\hat{g}=0$ it is possible to choose f with $\lambda b_{*}+f \notin B P$ for every λ. This implies no bounded solutions.

Theorem 17

Assume that Ω is minimal and $d_{S}(A) \leq 2$. If A has the recurrent Fredholm Alternative then $d_{F}(A)=d_{S}(A)$. Assume $0 \in \sigma(A)$ and $0<m=d_{S}(A)<n$. Let E be the kinematic extension with

$$
E=\left[\begin{array}{cr}
E_{\mathcal{V}} & 0 \\
0 & E_{\mathcal{W}}
\end{array}\right]
$$

then $0 \in \sigma\left(E_{\mathcal{V}}\right), 0 \notin \sigma\left(E_{\mathcal{W}}\right)$, and hence $d_{S}(A)=d_{S}\left(E_{\mathcal{V}}\right)$, $d_{F}(A)=d_{F}\left(E_{\mathcal{V}}\right)$.

The Fredholm Alternative is valid for $E_{\mathcal{V}}$ and the conditions ($F_{E_{\mathcal{V}}}$) and $\left(F_{E V}^{*}\right)$ hold.
Let us finally use the assumption $1 \leq m \leq 2$ in connection with the fact that $E_{\mathcal{V}}$ has the Fredholm alternative. Since $0 \in \sigma\left(E_{\mathcal{V}}\right)$ and $\left(F_{E_{\mathcal{V}}}\right)$ is satisfied when $m=1$ one has $1=d_{F}\left(E_{\mathcal{V}}\right)=d_{F}(A)$. Assume now $m=2$. since $\left(F_{E_{\mathcal{V}}}^{*}\right)$ is satisfied then $\left(E_{\mathcal{V}}\right)$ is kinematically similar to (13) or (14).
But A_{*} has to be excluded since $d_{S}\left(A_{*}\right)=1$ and we are in the case $d_{S}(A)=d_{S}\left(E_{\mathcal{V}}\right)=2$. Thus $E \mathcal{V}$ must be kinematically similar to E_{*}. Since E_{*} inherits the recurrent Fredholm Alternative from E, Proposition 16 guarantees that we are in the case $d_{F}\left(E_{*}\right)=2$. Hence the desired onequality $2=d_{F}\left(E_{*}\right)=d_{F}(A)=d_{S}(A)$ is satisfied. Thus the proof of the theorem is complete.

