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The homogeneous and nonhomogeneous linear equation.

Let us consider the nonhomogeneous linear differential equation in
Rn

x′ = A(t)x+ f(t) , t ∈ R, (1)

where A(t) and f(t) are bounded and uniformly continuous.

We consider that the joint Hull Ω = H(A, f) is recurrent and we
formulate (1) as a collective family

x′ = A(ω·t)x+ f(ω·t) , t ∈ R, ω ∈ Ω. (2)

The solutions of (2) induce a continuous skew-product semiflow

τ : R× Ω× Rn → Ω× Rn
(t, ω, x) 7→ (ω·t, u(t, ω, x)).

We ask for conditions that implies the existence of bounded
solutions. These conditions are given in terms of the adjoint
equation

x′ = −AT (ω·t)x (3)



The BP -condition.

If x(t) is a solution of (1) and v(t) is a bounded solution of the
adjoint equation (3) then∫ t

0
< f(s), v(s) > ds =

< x(s), v(s) >
∣∣∣t
0
−
∫ t

0
< v(s) +AT (s) v(s), x(s) > ds =

< x(t), v(t) > − < x(0), v(0) > .

Then a necesary condition for the existence of a bounded solution
of (1) is that < f, v >∈ BP (R,R) for every bounded solution v of
(3). We refer to this property as the BP-condition.

We will prove that this condition will be sufficient in some cases.
We first refer to linear homogeneous equations that satisfies the
Favard separation condition (FA).



The Favard separation condition.

Given the homogeneous equation

x′ = A(ω·t)x , ω ∈ Ω, (4)

the condition (FA) holds if for every ω ∈ Ω and every bounded
solution x(t) of (4)ω one has inf

t∈R
|x(t)| > 0.

We denote

B = {(ω, x) ∈ Ω× Rn | sup
t∈R
|φ(t, ω)x| <∞} and

d(ω) = dim{x ∈ Rn | (ω, x) ∈ B}.

The function d(ω) i s discrete and non continuous. I t has a 
residual invariant subset ΩF ⊂ Ω of points with minimum value 
d(ω) = dF (A) (Favard dimension) for ω ∈ ΩF (minimum of d).
(FA) holds if and only if d(ω) = dF for every ω ∈ Ω.
Then B is a continuous subbundle of Ω× Rn.



The Favard Theorem of recurrence.

Theorem 1

Let us assume that the nonhomogeneous equation (2) admits a
bounded solution, then

(i) the equation (2) has a recurrent solution
x(t) = u(t, ω0, x0) such that H(x) is a minimal
almost automorphic extension of (Ω, σ).

(ii) If (FA) holds, the equation (2) has a recurrent
solution x(t) = u(t, ω0, x0) such that H(x) is a copy
of the base (Ω, σ).

In this context, several possible assertions can be analized:

(1) If (FA) holds then (F ∗A) does.

(2) If (FA) and (F ∗A) hold then dF (A) = d∗F (A).

(3) If (FA) and (F ∗A) hold and dF (A) = d∗F (A) then the
BP -condition is sufficient to obtain bounded
solutions.



The Sacker-Sell spectral theory.

A second ingredient to give a positive answer to (3) is given in
terms of the Sacker-Sell spectrum of A.
The spectrum σ(A) is the set of the real λ’s for which the
homogeneous equation

x′ = [A(ω·t)− λI]x

does not admit exponential dichotomy on R. This is always a
nonempty compact set defined at most n adjoint closed intervals

σ(A) = [a1, b1] ∪ [a2, b2] ∪ ... ∪ [am, bm] , m ≤ n.

We denote by dS(A) (Sacker-Sell dimension) the vectorial
dimension of the subbundle associated to the spectral interval that
contains 0.
The bounded solutions are included in this subbundle, so we always
have

dF (A) ≤ dS(A).



The main theorems.

Theorem 2

Assume that H(A, f) is minimal and dF (A) = dS(A). Then (FA)
and (F ∗A) hold with dF (A) = d∗F (A) and condition BP is sufficient
to obtain bounded solutions of the nonhomogeneous equation (2).

A comment is done about condition BP : when A and f are
T -periodic the conclusions of the theorem are true even if
dF (A) = dS(A) is not satisfied. However our problem here is
different: we try to obtain the best conclusions of every
nonhomogeneous term. Next result shows that this difference is
crucial.

Theorem 3

Assume dS(A) ≤ 2 and (FA) and (F ∗A) hold. If condition BP is
sufficient to obtain bounded solutions of the nonhomogeneous
equation (2) for every f such that H(A, f) is minimal then
dF (A) = dS(A).



Other versions of the problem in the literature.

J. K. Hale, Ordinary differential equations, Wiley, (1969)
posed this problem when A(t) is purely periodic and f(t) is
almost-periodic (A-P for short).

Proposition 4

Let A(t) be a continuous and periodic function. Assume that for
every recurrent f , the nonhomogeneous equation (2) has a
bounded solution if and only if the BP -condition holds then
dF (A) = dS(A).

K. J. Palmer, Exponential dichotomies and transversal homoclinic
points, J. Diff. Eq., (1984).
He studies a close problem when A(t) and f(t) are just bounded
and continuous assuming exponential dichotomy in R+ and R− of
the homogeneous linear equation.



P. Cieutat and A. Haraux, Exponential decay and existence of
almost-periodic solution for some linear forced differential
equations, Port. Math., (2002).
They consider A(t), f(t) A-P functions, A(t) with sign, for
instance A(t) ≥ 0. Here A(t) is positive asymmetric and the sign

is that of its symmetric part SA(t) = A(t)+AT (t)
2 . They also assume

that the antisymmetric part KA(t) = A(t)−AT (t)
2 is purely periodic.

They prove that the nonhomogeneous equation has an A-P
solution if and only if

∫ t
0 < f(s), v(s) > ds is A-P for every A-P

solution of the pair of conditions

v′ = KA(t) v , SA(t) v(t) = 0.

Theorem 5

Assume that A(t) and f(t) are jointly recurrent and the matrix
A(t) has sign. Then dF (A) = dS(A) and the nonhomogeneous
equation admits bounded solution if and only if BP holds.



Robustness of the BP -condition.

R. Ortega, M. Tarallo, Almost-periodic equations and conditions
of Ambrosetti-Prodi type, Math. Proc. Camb. Phil. Soc., (2003).
They consider the recurrent damped Hill equation

x′′ + c x′ + a(t)x = g(t) ,

with c 6= 0, a(t) and g(t) are A-P, whose homogeneous part is
disconjugated in a strong sense. They show that BP -condition
implies the existence of bounded A-P solutions.
But here is possible to prove that dF (A) = dS(A) = 1.
We need a preliminary result that provides the correct formulation
of the BP -condition, assuming (F ∗A).

Lemma 6

Assume that Ω is minimal and (F ∗A) holds. If

< fω, φ
∗
A(·, ω) ξ >∈ BP ∀ξ ∈ B∗ω(A)

holds for some ω0 ∈ Ω. Then it holds for every ω ∈ Ω.



The proof of the statement

The Cauchy operator of the adjoint equation is

Φ∗A(t, ω) = φ−AT (t, ω) = {φA(t, ω)T }−1.

Using the minimality we find ω0 · tn = ω. The map

L : B∗ω0
(A)→ B∗ω(A) , ξ0 7→ lim

n→∞
φ∗A(tn, ω0) ξ0

is an isomorphism. Take ξ0 = L−1ξ, by hipothesis∣∣∣ ∫ t

0
< f(ω0 · s), φ∗A(s, ω0) ξ0 > ds

∣∣∣ ≤M for every t ∈ R.



The proof of the statement

The cocycle identity provides∣∣∣ ∫ t

0
< f((ω0 · tn) · s), φ∗A(s, ω0 · tn)φ∗A(tn, ω0) ξ0 > ds

∣∣∣
=
∣∣∣ ∫ t

0
< f(ω0 · (s+ tn)), φ∗A(s+ tn, ω0) ξ0 > ds

∣∣∣
=
∣∣∣ ∫ t+tn

0
< f(ω0 · s), φ∗A(s, ω0) ξ0 > ds

−
∫ t

0
< f(ω0 · s), φ∗A(s, ω0) ξ0 > ds

∣∣∣ ≤ 2M

and hence ∣∣∣ ∫ t

0
< f(ω · s), φ∗A(s, ω) ξ > ds

∣∣∣ ≤ 2M

for every ω ∈ Ω and t ∈ R.



The conditions (FA) + [dS = dF ]

R. J. Sacker, G. R. Sell, Existence of dichotomies and invariant
splittings for linear differential systems III, J. Diff. Eq., (1976).
They assume that (FA) holds. Thus B(A) is an invariant
subbundle.
A flow can be defined in B(A)⊥ by projecting the operator φA.
The second assumption is that this induced flow has not bounded
solutions but the trivial one. Sacker and Sell proves that these
assumptions are equivalent to the existence of a trichotomy. That
is, the stable and unstable fibers spaces U(A) and S(A) are also
subbundles and moreover

Ω× Rn = U(A)⊕ B(A)⊕ S(A)

This implies dF = dS . The converse is consequence of the Spectral
Theorem proved in
R. J. Sacker, G. R. Sell, A spectral theory for linear differential
systems, J. Diff. Eq., (1978).



The maximal and minimal dimensions.

Proposition 7

Let us assume dF (A) = n. The σ(A) = {0} and (F ∗A) holds with
d∗F (A) = n. If the BP -condition is satisfied for a jointly recurrent
term f , the nonhomogeneous equation admit bounded solutions.

Let us fix ω ∈ Ω. There exist constants 0 < m ≤M < +∞ such
that

m |ξ| ≤ |φA(t, ω) ξ| ≤M |ξ| and

1

M
|ξ| ≤ |φ∗A(t, ω) ξ| ≤ 1

m
|ξ|

for every ξ ∈ Rn and t ∈ R. In particular (F ∗A) holds with
d∗F (A) = n.
Assume now that BP is satisfied and observe that

<

∫ t

0
φ−1A (s, ω) f(ω · s) ds, ξ >=

∫ t

0
< f(ω · s), φ∗A(s, ω)ξ > ds

for every ξ ∈ Rn and t ∈ R. The left integral is bounded in t ∈ R



Change of variables and Fredholm alternative.

It requires some consecutive steps. The first step is consider an
epimorphism of minimal flows ϕ : Θ→ Ω and the new equation

z′ = A◦ ϕ(θ · t) z , θ ∈ Θ (5)

We say that A = A ◦ ϕ extends A and write A � A and Θ � Ω.
A Lyapunov-Perron transformation on Θ is a map
Q ∈ C(Θ, GL(n)) such that DQ exists and is also continuous.
The change of variables z = Q(θ · t)u transform (5) into

u′ = E(θ · t)u

where E(θ) = Q(θ)−1{A(ϕ(θ))Q(θ)−DQ(θ)}. E is called a
minimal kinematic extension of A and write E > A. This is the
second step of the process.
When ϕ is an isomorphism we talk about kinematic similarity
writing E ∼ A.



Definition 8

We say that A ∈ C(Ω,L(n)) has the property (CA) when
whatever f ∈ C(Ω,Rn) we take that if the condition

< fω, φ
∗
A(·, ω) ξ >∈ BP (R,R) , ∀ξ ∈ B∗ω(A) (6)

is satisfied for every ω ∈ Ω, then the equation

x′ = A(ω·t)x+ f(ω·t) (7)

admits bounded solutions for every ω ∈ Ω.

Definition 9

Let (Ω, σ) be a minimal flow and A ∈ C(Ω,L(n)). We say that A
has the recurrent Fredholm Alternative property when

(a) Conditions (FA) and (F ∗A) are satisfied.

(b) Every minimal extension A � A satisfies (CA).



Some preliminary results.

Lemma 10

Assume A � A. If (CA) holds then (CA) holds too.

Write A = A ◦ ϕ where ϕ : Θ→ Ω is an epimorphism. Take
f ∈ C(Ω,Rn) and suppose that BP -condition (6) is satisfied.
Since f ◦ ϕ ∈ C(Θ,Rn) we are in the scope of condition (CA) to
conclude set ϕ(θ) = ω, then

(f ◦ ϕ)θ = fω , φ∗A◦ϕ(t, θ) = φ∗A(t, ω) , and

z′ = (A◦ϕ)(θ · t) z + (f ◦ ϕ)(θ · t)

is just our nonhomogeneous equation.



Lemma 11

Assume that E ∼ A. Then (CE) is equivalent to (CA).

Let ϕ : Θ→ Ω be an isomorphism and Q : R→ GL(n) the
Lyapunov-Perron transformation. Condition (CE) refers to the
existence of bounded solutions of

u′ = E(θ · t)u+ g(θ · t) (8)

Take f with g(θ) = Q(θ)−1 f(ϕ(θ)) and consider ω with
ϕ(θ) = ω. The change of variables x = Q(θ · t)u takes (7) into
(8) and defines a bijection between their bounded solutions. The
change y = Q∗(θ · t) v with Q∗(ω) = (Q(ω)−1)T . Moreover

< g(θ · t), v(t) >=< Q(θ · t)−1 f(ϕ(θ · t)), v(t) >

=< f(ω·t), Q∗(θ · t) v(t) >

=< f(ω·t), y(t) > .



Proposition 11

Let E > A be a given minimal kinematic extension. The two
following facts are equivalent

(1) every minimal extension A � A satisfies (CA)

(2) every minimal extension E � E satisfies (CE)

Let ϕ : Θ→ Ω be the epimorphism underlying B > A and
Q : Ω→ GL(n) the Lyapunov-Perron transformation allowing to
write E from A.
(1)⇒ (2) Write E = E ◦ψ with ψ : Σ→ Θ an epimorphism. Then

E = E ◦ ψ ∼ (A ◦ ϕ) ◦ ψ = A ◦ (ϕ ◦ ψ) = A � A.
(2) ⇒ (1)  Write   A  = A ◦ψ  where ψ: Σ →  Ω  is an epimorphism.
 Consider  Θ × Σ  and denote by p and q t he projections on t he 
factors. The subset {(θ, σ) ∈ Θ × Σ  | ϕ(θ) =  ψ(σ)} contains a 
minimal set M.  Moreover ϕ ◦ p =  ψ◦ q holds i n M. Then

E = E ◦ p ∼ (A ◦ ϕ) ◦ p = A ◦ (ϕ ◦ p) = (A ◦ ψ) ◦ q = A ◦ q � A
and the conclusion follows from the previous Lemma.



The direct Theorem.

Theorem 12

Assume that Ω is minimal and A ∈ C(Ω,L(n)). If

dF (A) = dS(A)

then A has the recurrent Fredholm Alternative property and
dF (A∗) = dS(A∗)

We can consider 0 < dS(A) = m < n and k = n−m. Let V(A)
be the spectral subbundle corresponding to the spectral containing
0. That is B(A) = V(A). Consider now the SS-spectral
decomposition

Ω× Rn = V(A)⊕W(A)

where W(A) is the direct sum of the direct subbundles
corresponding to the spectral intervals in σ(A)− {0}. The papers
K. J. Palmer, On the reducibility of almost-periodic systems of
linear systems, J. Diff. Eq., (1980)
R. Ellis, R. A. Johnson, Topological dynamics and linear
differential systems, J. Diff. Eq., (1982)



Show that V(A) and W(A) can be untwisted on a minimal flow by
a kinetic extension E > A. That is E is block-diagonal

E =

[
EV 0
0 EW

]
,

with blocks EV and EW having dimensions m and k respectively.
The solutions of the two uncoupled system{

v′ = EV(θ · t)v
w′ = EW(θ · t)w,

(9)

are (modulo the change of variables) the solutions of the original
systems that lie in V(A) and W(A) respectively. We have

dF (EV) = m, 0 is not in σ(EW).

We consider a flow epimorphism Ψ : Σ→ Θ and E = E ◦Ψ > E
defines a linear system similar to (9). Thus is sufficient to prove
the (CE) property for (9) with adjoint equation{

v′ = −EV(θt)v

w′ = −EW(θt)w,
(10)



A solution of (10) is bounded if and only if v is bounded and
w = 0. we have dF (EV) = m = d∗F (EV), thus (F ∗E) holds with
dimension m. Since these conditions are invariant by kinematic
extension also (F ∗A) holds with d∗F (A) = m.
Consider f ∈ C(Θ, Rn) and decompose it as f = (g, h). The
BP-condition

< gθ, φ
∗
EV (·, θ) ξ >∈ BP (R,R) , ∀ξ ∈ B∗θ(A)

is now equivalent to the existence of bounded solutions of

v′ = EW(θt)v + g(θt). We denote by v one of these solutions and 
take W , the unique bounded solution of w′ = EW(θt) + h(θt). 
Then (v, w) is bounded solution of the nonhomogeneous equation, 
concluding the proof of (CE). A notion of A-P Fredholm 
Alternative can be introduced when (Ω, σ) is an A-P flow and f is 
A-P. these theorems assure the existence of A-P solutions, however 
their proof is outsside of the A-P framework. The reason is that 
the extension Θ > Ω, where A diagonalizes by blocks, may fail to 
be A-P even if (Ω, σ) is.



R. A. Johnson, On a Floquet theory for almost-periodic 
two-dimension linear systems, J. Diff. Eq., (1980),
R. A. Johnson, K. Palmer, G. R. Sell, Ergodic properties of linear 
dynamical systems, SIAM J. Math. Anal., (1981)
proves the existence of a kinematic extension of A, E >A such that

x′ = E(ω·t)x
has a triangular form. For n = 2 we consider[

x′1
x′2

]
=

[
a(ω·t) b(ω·t)

0 c(ω·t)

] [
x1
x2

]
(11)

with adjoint equation[
y′1
y′2

]
=

[
−a(ω·t) 0
−b(ω·t) −c(ω·t)

] [
y1
y2

]
(12)

Lemma 13

Conditions (FE) and (FE
∗ ) hold simultaneously if and only if (Fa) 

and (Fc) do the same. In this case d∗F (E) = dF (E).

(Fa) and (Fc) refer to the one-dimensional systems x′ = a(ω·t)x
and x′ = c(ω·t)x.



The converse Theorem

Theorem 14

Assume that 0 ∈ σ(E). The conditions (FE) and (F ∗E) are jointly
satisfied if and only if E is kineticaly similar on Ω to either

A∗ =

[
a∗ 0
0 0

]
with 0 /∈ σa∗ (13)

or to

E∗ =

[
0 b∗
0 0

]
(14)

where a∗ and b∗ ∈ C(Ω,R).

It is clear that A∗ and E∗ satisfy the direct and adjoint Favard
conditions. Assume now that (FE) and (F ∗E) are satisfied and
hence also (Fa) and (Fc).



Since 0 ∈ σ(E) = σ(a) ∪ σ(c) we can distinguish three cases:

(1) If 0 /∈ σ(a), c ∈ BP (Ω) it is possible to construct ĉ,
p ∈ C(Ω) with

Dĉ = c , Dp = a p+ b eĉ

A direct computation shows that the change of
variables x1 = u1 + p(ω·t)u2, x2 = eĉ(ω·t) u2 takes
(11) into (13) with a∗ = a.

(2) If a ∈ BP (Ω), 0 /∈ σ(c) the previous arguments can
be applied to the adjoint system. After swapping the
two components and taking the adjoint we deduce
that E is kinetically similar to A∗ with a∗ = c.

(3) If a ∈ BP (Ω), c ∈ BP (Ω) the diagonal change of
variables x1 = eâ(ω·t) u1 and x2 = eĉ(ω·t) u2 takes
(11) into (14) with b∗ = b eĉ−â.



Proposition 15

Let Ω minimal and A∗ given by (13), then
σ(A∗) = {0} ∪ σ(a∗) , dF (A∗) = 1 = dS(A∗)

and A∗ has the recurrent Fredholm Alternative property.

Proposition 16

Let Ω be minimal and E∗ given by (14), then

σ(E∗) = {0} , dS(E∗) = 2 , dF (E∗) =

{
1 if b∗ /∈ BP (Ω)

2 if b∗ ∈ BP (Ω)

and E∗ has the recurrent Fredholm Alternative property if and only
if b∗ ∈ BP (Ω).

Note that σ(E∗) = 0 and dS(E∗) = 2. The general solution of
(14) x1 = x10 + x20

∫ t
0 b∗(ω · s) ds , x2 = x20 and

y1 = y10 , y2 = y20 − y10
∫ t
0 b∗(ω · s) ds for the adjoint equation.

The theorem applies when b∗ ∈ BP (Ω). We next consider the case
b∗ /∈ BP (Ω). Given f, g ∈ C(Ω) and the equations

x′1 = b∗(ω·t)x2 + f(ω·t) , x′2 = g(ω·t)



Here g ∈ BP (Ω) is the BP -condition. Suppose it and take
ĝ ∈ C(Ω) with Dĝ = g. Then x2 = x20 + ĝ(ω·t) and hence

x′1 = b(ω∗){x2 + ĝ(ω·t)}+ f(ω·t)
and the existence of bounded solutions writes as

b∗(x20 + gˆ) + f ∈ BP (Ω)

for suitable x20. This can be satisfied when Ω is periodic. When Ω
is aperiodic and g = ĝ = 0 it is possible to choose f with
λb∗ + f /∈ BP for every λ. This implies no bounded solutions.

Theorem 17

Assume that Ω is minimal and dS(A) ≤ 2. If A has the recurrent
Fredholm Alternative then dF (A) = dS(A). Assume 0 ∈ σ(A) and
0 < m = dS(A) < n. Let E be the kinematic extension with

E =

[
EV 0
0 EW

]
,

then 0 ∈ σ(EV), 0 /∈ σ(EW), and hence dS(A) = dS(EV),
dF (A) = dF (EV).



The proof of the converse condition.

The Fredholm Alternative is valid for EV and the conditions (FEV )
and (F ∗EV

) hold.
Let us finally use the assumption 1 ≤ m ≤ 2 in connection with
the fact that EV has the Fredholm alternative. Since 0 ∈ σ(EV)
and (FEV ) is satisfied when m = 1 one has 1 = dF (EV) = dF (A).
Assume now m = 2. since (F ∗EV

) is satisfied then (EV) is
kinematically similar to (13) or (14).
But A∗ has to be excluded since dS(A∗) = 1 and we are in the
case dS(A) = dS(EV) = 2. Thus EV must be kinematically similar
to E∗. Since E∗ inherits the recurrent Fredholm Alternative from
E, Proposition 16 guarantees that we are in the case dF (E∗) = 2.
Hence the desired onequality 2 = dF (E∗) = dF (A) = dS(A) is
satisfied. Thus the proof of the theorem is complete.




