Atractores en EDPs parabólicas, escalares y casi-periódicas con exponente 0

Ana M. Sanz
Universidad de Valladolid

Trabajo conjunto con Tomás Caraballo y José A. Langa de la Universidad de
Sevilla, y Rafael Obaya de la Universidad de Valladolid

Ddays 2018, Murcia

Starting point

Cardoso, Langa, Obaya, Characterization of cocycle attractors for nonautonomous reaction-diffusion equations, Internat. J. Bifur. Chaos, 26 (8) (2016).

Caraballo, Langa, Obaya, Pullback, forward and chaotic dynamics in 1-D non-autonomous linear-dissipative equations, Nonlinearity 30 (1) (2017).

Scalar ODEs $\quad y^{\prime}=h(p \cdot t) y+g(y) \quad$ with null exponent.

Starting point

Cardoso, Langa, Obaya, Characterization of cocycle attractors for nonautonomous reaction-diffusion equations, Internat. J. Bifur. Chaos, 26 (8) (2016).

Caraballo, Langa, Obaya, Pullback, forward and chaotic dynamics in 1-D non-autonomous linear-dissipative equations, Nonlinearity 30 (1) (2017).

Scalar ODEs $\quad y^{\prime}=h(p \cdot t) y+g(y) \quad$ with null exponent.

Our theory:
Caraballo, Langa, Obaya, S., Global and cocycle attractors for non-autonomous reaction-diffusion equations. The case of null upper Lyapunov exponent, J. of Differential Equations 265 (2018).

Family of scalar linear-dissipative parabolic PDEs over P

Given a minimal, uniquely ergodic and aperiodic flow (P, \cdot, \mathbb{R}) over a compact metric space P, for each $p \in P$ we consider the problem for $y(t, x)$ with Neumann or Robin boundary conditions:

$$
\left\{\begin{array}{l}
\frac{\partial y}{\partial t}=\Delta y+h(p \cdot t, x) y+g(p \cdot t, x, y), \quad t>0, x \in U \\
\alpha(x) y+\frac{\partial y}{\partial n}=0, \quad t>0, x \in \partial U
\end{array}\right.
$$

where:
$x \in \bar{U} \subset \mathbb{R}^{m}(m \geq 1)$ the spatial domain;
$h: P \times \bar{U} \rightarrow \mathbb{R}$ determines the linear term;
$g: P \times \bar{U} \times \mathbb{R} \rightarrow \mathbb{R}$ is the dissipative term;
$\alpha: \partial U \rightarrow \mathbb{R}$ is sufficiently regular and nonnegative;
$\partial / \partial n$ is the outward normal derivative at the boundary.

Associated linear problems, for each $p \in P$,

$$
\left\{\begin{array}{l}
\frac{\partial y}{\partial t}=\Delta y+h(p \cdot t, x) y, \quad t>0, x \in U \\
\alpha(x) y+\frac{\partial y}{\partial n}=0, \quad t>0, \quad x \in \partial U
\end{array}\right.
$$

where $h \in C(P \times \bar{U})$.

To the IBV problem for each $p \in P$ and $z \in C(\bar{U})$,

$$
\left\{\begin{array}{l}
\frac{\partial y}{\partial t}=\Delta y+h(p \cdot t, x) y, \quad t>0, \quad x \in U, \\
\alpha(x) y+\frac{\partial y}{\partial n}=0, \quad t>0, \quad x \in \partial U, \\
y(0, x)=z(x), \quad x \in \bar{U},
\end{array}\right.
$$

we associate an abstract linear Cauchy problem in $C(\bar{U})$,

$$
\left\{\begin{array}{l}
v^{\prime}(t)=A v(t)+\tilde{h}(p \cdot t) v(t), \quad t>0 \tag{1}\\
v(0)=z
\end{array}\right.
$$

with $\tilde{h}: P \rightarrow C(\bar{U}), \tilde{h}(p)(x)=h(p, x)$ for $x \in \bar{U}$.

To the IBV problem for each $p \in P$ and $z \in C(\bar{U})$,

$$
\left\{\begin{array}{l}
\frac{\partial y}{\partial t}=\Delta y+h(p \cdot t, x) y, \quad t>0, \quad x \in U, \\
\alpha(x) y+\frac{\partial y}{\partial n}=0, \quad t>0, \quad x \in \partial U, \\
y(0, x)=z(x), \quad x \in \bar{U},
\end{array}\right.
$$

we associate an abstract linear Cauchy problem in $C(\bar{U})$,

$$
\left\{\begin{array}{l}
v^{\prime}(t)=A v(t)+\tilde{h}(p \cdot t) v(t), \quad t>0 \tag{1}\\
v(0)=z
\end{array}\right.
$$

with $\tilde{h}: P \rightarrow C(\bar{U}), \tilde{h}(p)(x)=h(p, x)$ for $x \in \bar{U}$.
This problem has a unique mild solution: a continuous map $v(t)=v(t, p, z):[0, \infty) \rightarrow C(\bar{U})$ which satisfies the integral equation

$$
v(t)=e^{t A} z+\int_{0}^{t} e^{(t-s) A} \tilde{h}(p \cdot s) v(s) d s, \quad t \geq 0
$$

Mild solutions induce a globally-defined continuous linear skew-product semiflow

$$
\begin{array}{cccc}
\tau_{L}: & \mathbb{R}_{+} \times P \times C(\bar{U}) & \longrightarrow & P \times C(\bar{U}) \\
& \longrightarrow t, p, z) & \mapsto & (p \cdot t, \phi(t, p) z)
\end{array}
$$

where $\phi(t, p) z=v(t, p, z)$, the mild solution for the linear problem given by p with initial condition given by z.

Mild solutions induce a globally-defined continuous linear skew-product semiflow

$$
\begin{array}{cccc}
\tau_{L}: & \mathbb{R}_{+} \times P \times C(\bar{U}) & \longrightarrow & P \times C(\bar{U}) \\
(t, p, z) & \mapsto & (p \cdot t, \phi(t, p) z)
\end{array}
$$

where $\phi(t, p) z=v(t, p, z)$, the mild solution for the linear problem given by p with initial condition given by z.
The operators $\phi(t, p): C(\bar{U}) \rightarrow C(\bar{U})$ satisfy:
(i) Linear semicocycle property:

$$
\phi(t+s, p)=\phi(t, p \cdot s) \phi(s, p), \quad p \in P, t, s \geq 0
$$

(ii) For $p \in P$ and $t>0$, they are compact and strongly positive: if $z>0$, then $\phi(t, p) z \gg 0$.

Mild solutions induce a globally-defined continuous linear skew-product semiflow

$$
\begin{array}{rll}
\tau_{L}: \quad \mathbb{R}_{+} \times P \times C(\bar{U}) & \longrightarrow & P \times C(\bar{U}) \\
(t, p, z) & \mapsto & (p \cdot t, \phi(t, p) z)
\end{array}
$$

where $\phi(t, p) z=v(t, p, z)$, the mild solution for the linear problem given by p with initial condition given by z.
The operators $\phi(t, p): C(\bar{U}) \rightarrow C(\bar{U})$ satisfy:
(i) Linear semicocycle property:

$$
\phi(t+s, p)=\phi(t, p \cdot s) \phi(s, p), \quad p \in P, t, s \geq 0
$$

(ii) For $p \in P$ and $t>0$, they are compact and strongly positive: if $z>0$, then $\phi(t, p) z \gg 0$.

Remark: for n-dimensional systems, additional conditions are needed.

A key property: the linear semiflow admits a continuous separation

This result comes as a step by step generalization of a previous result:
(i) The Perron-Frobenius theorem (1907-1909): finite-dimensional case, i.e., nonnegative and irreducible $n \times n$ matrices;

A key property: the linear semiflow admits a continuous separation

This result comes as a step by step generalization of a previous result:
(i) The Perron-Frobenius theorem (1907-1909): finite-dimensional case, i.e., nonnegative and irreducible $n \times n$ matrices;
(ii) The Krein-Rutman theorem (1950): infinite-dimensional case, $A: X \rightarrow X$ compact and strongly positive linear operator on the strongly ordered Banach space X;

A key property: the linear semiflow admits a continuous separation

This result comes as a step by step generalization of a previous result:
(i) The Perron-Frobenius theorem (1907-1909): finite-dimensional case, i.e., nonnegative and irreducible $n \times n$ matrices;
(ii) The Krein-Rutman theorem (1950): infinite-dimensional case, $A: X \rightarrow X$ compact and strongly positive linear operator on the strongly ordered Banach space X;
(iii) Poláčik and Tereščák (1993): the result for vector bundle maps on $P \times X$;

A key property: the linear semiflow admits a continuous separation

This result comes as a step by step generalization of a previous result:
(i) The Perron-Frobenius theorem (1907-1909): finite-dimensional case, i.e., nonnegative and irreducible $n \times n$ matrices;
(ii) The Krein-Rutman theorem (1950): infinite-dimensional case, $A: X \rightarrow X$ compact and strongly positive linear operator on the strongly ordered Banach space X;
(iii) Poláčik and Tereščák (1993): the result for vector bundle maps on $P \times X$;
(iv) Shen and Yi (1998): the result for linear skew-product semiflows on $P \times X$.

There are two families of subspaces $\left\{X_{1}(p)\right\}_{p \in P}$ and $\left\{X_{2}(p)\right\}_{p \in P}$ of $C(\bar{U})$ which satisfy:
(1) $C(\bar{U})=X_{1}(p) \oplus X_{2}(p)$, with a continuous variation in P;
(2) $X_{1}(p)=\langle e(p)\rangle$, with $e(p) \gg 0$ and $\|e(p)\|=1$ for any $p \in P$;
(3) $X_{2}(p) \cap C(\bar{U})_{+}=\{0\}$ for any $p \in P$;
(4) for any $t>0, p \in P$,

$$
\begin{aligned}
& \phi(t, p) X_{1}(p)=X_{1}(p \cdot t) \\
& \phi(t, p) X_{2}(p) \subseteq X_{2}(p \cdot t)
\end{aligned}
$$

(5) there are $M>0, \delta>0$ such that for any $p \in P, z \in X_{2}(p)$ with $\|z\|=1$ and $t>0$,

$$
\|\phi(t, p) z\| \leq M e^{-\delta t}\|\phi(t, p) e(p)\|
$$

Principal bundle and principal spectrum (Mierczyński and Shen, 2004)

- The principal bundle is the 1-dim invariant subbundle

$$
\bigcup_{p \in P}\{p\} \times X_{1}(p)
$$

Principal bundle and principal spectrum (Mierczyński and Shen, 2004)

- The principal bundle is the 1-dim invariant subbundle

$$
\bigcup_{p \in P}\{p\} \times X_{1}(p)
$$

- The principal spectrum $\Sigma_{p r}$ is the Sacker-Sell spectrum or continuous spectrum of the restriction of τ_{L} to the principal bundle. In general $\Sigma_{\mathrm{pr}}=\left[\alpha_{P}, \lambda_{P}\right]$.

Principal bundle and principal spectrum (Mierczyński and Shen, 2004)

- The principal bundle is the 1-dim invariant subbundle

$$
\bigcup_{p \in P}\{p\} \times X_{1}(p)
$$

- The principal spectrum $\Sigma_{p r}$ is the Sacker-Sell spectrum or continuous spectrum of the restriction of τ_{L} to the principal bundle. In general $\Sigma_{\mathrm{pr}}=\left[\alpha_{P}, \lambda_{P}\right]$.
- When P is uniquely ergodic, $\Sigma_{\mathrm{pr}}=\left\{\lambda_{P}\right\}$, for the upper Lyapunov exponent λ_{P}.

To each linear coefficient $h \in C(P \times \bar{U})$ we associate a 1-dim linear semicocycle $c(t, p)$, the one driving the dynamics of τ_{L} when restricted to the principal bundle, i.e., $c(t, p)$ is the positive number such that

$$
\phi(t, p) e(p)=c(t, p) e(p \cdot t), \quad t \geq 0, p \in P .
$$

$c(t, p)$ can be extended to a linear cocycle

$$
c(t+s, p)=c(t, p \cdot s) c(s, p), \quad p \in P, t, s \in \mathbb{R}
$$

by taking $c(-t, p)=1 / c(t, p \cdot(-t))$ for any $t>0$ and $p \in P$.

To each linear coefficient $h \in C(P \times \bar{U})$ we associate a 1-dim linear semicocycle $c(t, p)$, the one driving the dynamics of τ_{L} when restricted to the principal bundle, i.e., $c(t, p)$ is the positive number such that

$$
\phi(t, p) e(p)=c(t, p) e(p \cdot t), \quad t \geq 0, p \in P
$$

$c(t, p)$ can be extended to a linear cocycle

$$
c(t+s, p)=c(t, p \cdot s) c(s, p), \quad p \in P, t, s \in \mathbb{R}
$$

by taking $c(-t, p)=1 / c(t, p \cdot(-t))$ for any $t>0$ and $p \in P$.
Besides,

$$
\lambda_{P}=\limsup _{t \rightarrow \infty} \frac{\ln c(t, p)}{t} \quad \text { for each } p \in P
$$

The case of null upper Lyapunov exponent: $\lambda_{P}=0$

Let $C_{0}(P \times \bar{U})=\left\{h \in C(P \times \bar{U}) \mid \lambda_{P}(h)=0\right\}$. Theorem: It is a complete metric space.

Let $C_{0}(P \times \bar{U})=\left\{h \in C(P \times \bar{U}) \mid \lambda_{P}(h)=0\right\}$.
Theorem: It is a complete metric space.
We classify the maps $h \in C_{0}(P \times \bar{U})$ depending on whether the associated 1-dim cocycle $c(t, p)$ is "bounded" or not:

$$
B(P \times \bar{U})=\left\{h \in C_{0}(P \times \bar{U})|\sup | \ln c(t, p) \mid<\infty \text { for any } p \in P\right\},
$$

$$
\mathcal{U}(P \times \bar{U})=C_{0}(P \times \bar{U}) \backslash B(P \times \bar{U}) .
$$

Let $C_{0}(P \times \bar{U})=\left\{h \in C(P \times \bar{U}) \mid \lambda_{P}(h)=0\right\}$.
Theorem: It is a complete metric space.
We classify the maps $h \in C_{0}(P \times \bar{U})$ depending on whether the associated 1-dim cocycle $c(t, p)$ is "bounded" or not:
$B(P \times \bar{U})=\left\{h \in C_{0}(P \times \bar{U})\left|\sup _{t \in \mathbb{R}}\right| \ln c(t, p) \mid<\infty\right.$ for any $\left.p \in P\right\}$, $\mathcal{U}(P \times \bar{U})=C_{0}(P \times \bar{U}) \backslash B(P \times \bar{U})$.

Remark: if the flow on P is periodic, then $C_{0}(P \times \bar{U})=B(P \times \bar{U})$.

Theorem (in line with the classical result by Gottschalk and Hedlund (1955) for maps in $C_{0}(P)=\left\{a \in C(P) \mid \int_{P} a d \nu=0\right\}$). The following conditions are equivalent:
(i) For any $p \in P, \sup _{t \in \mathbb{R}}|\ln c(t, p)|<\infty$.
(ii) There exists a $p_{0} \in P$ such that $\sup _{t \in \mathbb{R}}\left|\ln c\left(t, p_{0}\right)\right|<\infty$.
(iii) There exists a $p_{0} \in P$ such that

$$
\text { either } \sup _{t \geq 0}\left|\ln c\left(t, p_{0}\right)\right|<\infty \quad \text { or } \sup _{t \leq 0}\left|\ln c\left(t, p_{0}\right)\right|<\infty .
$$

(iv) There exists a function $k \in C(P)$ such that

$$
k(p \cdot t)-k(p)=\ln c(t, p) \text { for all } p \in P, t \in \mathbb{R}
$$

Theorem (in line with the oscillation result by Johnson (1978) for maps in $C_{0}(P)$ with unbounded primitive).
If the associated 1-dim linear cocycle $c(t, p)$ does not satisfy the previous conditions, then there exists an invariant and residual set $P_{\mathrm{o}} \subset P$ such that for any $p \in P_{\mathrm{o}}$,

$$
\begin{aligned}
& \liminf _{t \rightarrow \pm \infty} c(t, p)=0 \\
& \limsup _{t \rightarrow \pm \infty} c(t, p)=\infty
\end{aligned}
$$

Dynamics of the linear semiflow when $\lambda_{P}=0$

If $h \in B(P \times \bar{U})$:
(i) For $z>0$, bounded orbits both above and away from 0 .
(ii) There is a strongly positive continuous equilibrium $\widehat{e}: P \rightarrow \operatorname{lnt} C(\bar{U})_{+}, \widehat{e}(p \cdot t)=\phi(t, p) \widehat{e}(p)$ for $p \in P, t \geq 0$ (thus, infinitely many).

Dynamics of the linear semiflow when $\lambda_{P}=0$

If $h \in B(P \times \bar{U})$:
(i) For $z>0$, bounded orbits both above and away from 0 .
(ii) There is a strongly positive continuous equilibrium $\widehat{e}: P \rightarrow \operatorname{lnt} C(\bar{U})_{+}, \widehat{e}(p \cdot t)=\phi(t, p) \widehat{e}(p)$ for $p \in P, t \geq 0$ (thus, infinitely many).

If $h \in \mathcal{U}(P \times \bar{U})$:
(i) There is an invariant and residual set $P_{\mathrm{o}} \subset P$ such that for any $p \in P_{\mathrm{O}}$ and any $z>0$, the orbit $\phi(t, p) z$ has a strong oscillating behaviour:

$$
\liminf _{t \rightarrow \infty}\|\phi(t, p) z\|=0 \text { and } \limsup _{t \rightarrow \infty}\|\phi(t, p) z\|=\infty
$$

(ii) There is a pinched invariant compact set in $P \times\left(\operatorname{lnt} C(\bar{U})_{+} \cup\{0\}\right)$.

Dynamics of the linear semiflow when $\lambda_{P}=0$

If $h \in B(P \times \bar{U})$:
(i) For $z>0$, bounded orbits both above and away from 0 .
(ii) There is a strongly positive continuous equilibrium $\widehat{e}: P \rightarrow \operatorname{lnt} C(\bar{U})_{+}, \widehat{e}(p \cdot t)=\phi(t, p) \widehat{e}(p)$ for $p \in P, t \geq 0$ (thus, infinitely many).

If $h \in \mathcal{U}(P \times \bar{U})$:
(i) There is an invariant and residual set $P_{\mathrm{o}} \subset P$ such that for any $p \in P_{\mathrm{O}}$ and any $z>0$, the orbit $\phi(t, p) z$ has a strong oscillating behaviour:

$$
\liminf _{t \rightarrow \infty}\|\phi(t, p) z\|=0 \text { and } \limsup _{t \rightarrow \infty}\|\phi(t, p) z\|=\infty .
$$

(ii) There is a pinched invariant compact set in $P \times\left(\operatorname{lnt} C(\bar{U})_{+} \cup\{0\}\right)$.
$\mathcal{U}(P \times \bar{U})$ is a residual set in $C_{0}(P \times \bar{U})$.

Back to the linear-dissipative problems

Given a minimal, uniquely ergodic and aperiodic flow (P, \cdot, \mathbb{R}) over a compact metric space P, for each $p \in P$ we consider the problem for $y(t, x)$ with Neumann or Robin boundary conditions:

$$
\left\{\begin{array}{l}
\frac{\partial y}{\partial t}=\Delta y+h(p \cdot t, x) y+g(p \cdot t, x, y), \quad t>0, x \in U \\
\alpha(x) y+\frac{\partial y}{\partial n}=0, \quad t>0, x \in \partial U
\end{array}\right.
$$

With $h \in C(P \times \bar{U})$ and $g: P \times \bar{U} \times \mathbb{R} \rightarrow \mathbb{R}$ continuous and of class C^{1} with respect to y, arguing as in the linear case, one can build the associated skew-product semiflow induced by mild solutions. In principle it is only locally defined.

$$
\begin{array}{cccc}
\tau: \mathbb{R}_{+} \times P \times C(\bar{U}) & \longrightarrow & P \times C(\bar{U}) \\
(t, p, z) & \mapsto & (p \cdot t, u(t, p, z))
\end{array}
$$

Assumptions

We assume that $h \in C_{0}(P \times \bar{U})$ and for the non-linear term g :
(c1) $g(p, x, 0)=\frac{\partial g}{\partial y}(p, x, 0)=0$ for any $p \in P$ and $x \in \bar{U}$;
(c2) $y g(p, x, y) \leq 0$ for any $p \in P, x \in \bar{U}$ and $y \in \mathbb{R}$;
(c3) $\lim _{|y| \rightarrow \infty} \frac{g(p, x, y)}{y}=-\infty$ uniformly on $P \times \bar{U}$;
(c4) $g(p, x,-y)=-g(p, x, y)$ for any $p \in P, x \in \bar{U}$ and $y \in \mathbb{R}$;
(c5) there exists an $r_{0}>0$ such that $g(p, x, y)=0$ if and only if $|y| \leq r_{0}$.

Assumptions

We assume that $h \in C_{0}(P \times \bar{U})$ and for the non-linear term g :
(c1) $g(p, x, 0)=\frac{\partial g}{\partial y}(p, x, 0)=0$ for any $p \in P$ and $x \in \bar{U}$;
(c2) $y g(p, x, y) \leq 0$ for any $p \in P, x \in \bar{U}$ and $y \in \mathbb{R}$;
(c3) $\lim _{|y| \rightarrow \infty} \frac{g(p, x, y)}{y}=-\infty$ uniformly on $P \times \bar{U}$;
(c4) $g(p, x,-y)=-g(p, x, y)$ for any $p \in P, x \in \bar{U}$ and $y \in \mathbb{R}$;
(c5) there exists an $r_{0}>0$ such that $g(p, x, y)=0$ if and only if $|y| \leq r_{0}$.

The skew-product semiflow is globally defined and strongly monotone.

Assumptions

We assume that $h \in C_{0}(P \times \bar{U})$ and for the non-linear term g :
(c1) $g(p, x, 0)=\frac{\partial g}{\partial y}(p, x, 0)=0$ for any $p \in P$ and $x \in \bar{U}$;
(c2) $y g(p, x, y) \leq 0$ for any $p \in P, x \in \bar{U}$ and $y \in \mathbb{R}$;
(c3) $\lim _{|y| \rightarrow \infty} \frac{g(p, x, y)}{y}=-\infty$ uniformly on $P \times \bar{U}$;
(c4) $g(p, x,-y)=-g(p, x, y)$ for any $p \in P, x \in \bar{U}$ and $y \in \mathbb{R}$;
(c5) there exists an $r_{0}>0$ such that $g(p, x, y)=0$ if and only if $|y| \leq r_{0}$.
The skew-product semiflow is globally defined and strongly monotone.
With a general $h \in C(P \times \bar{U})$ and conditions (c1)-(c3) Cardoso, Langa and Obaya (2016) prove the existence of a compact absorbing set, so that there is a global attractor $\mathbb{A} \subset P \times C(\bar{U})$.

The global attractor \mathbb{A} and the cocycle attractor

- $\mathbb{A} \subset P \times C(\bar{U})$ is a compact set;
- \mathbb{A} is invariant: $\tau_{t}(\mathbb{A})=\mathbb{A}$ for any $t \geq 0$;
- \mathbb{A} (forwards) attracts bounded sets $\mathbb{B} \subset P \times C(\bar{U})$: $\lim _{t \rightarrow \infty} \operatorname{dist}\left(\tau_{t}(\mathbb{B}), \mathbb{A}\right)=0$ for the Hausdorff distance.
- $\mathbb{A} \subset P \times C(\bar{U})$ is a compact set;
- \mathbb{A} is invariant: $\tau_{t}(\mathbb{A})=\mathbb{A}$ for any $t \geq 0$;
- \mathbb{A} (forwards) attracts bounded sets $\mathbb{B} \subset P \times C(\bar{U})$: $\lim _{t \rightarrow \infty} \operatorname{dist}\left(\tau_{t}(\mathbb{B}), \mathbb{A}\right)=0$ for the Hausdorff distance.

Since P is compact and \mathbb{A} is the global attractor, the non-autonomous set $\{A(p)\}_{p \in P}$ given by

$$
A(p)=\{z \in C(\bar{U}) \mid(p, z) \in \mathbb{A}\}
$$

is the cocycle attractor:

- it is compact: every $A(p)$ is compact in $C(\bar{U})$;
- it is invariant: for $p \in P, u(t, p, A(p))=A(p \cdot t)$ for $t \geq 0$;
- it pullback attracts all bounded subsets $B \subset C(\bar{U})$, that is,

$$
\lim _{t \rightarrow \infty} \operatorname{dist}(u(t, p \cdot(-t), B), A(p))=0 \quad \text { for any } p \in P
$$

Global and cocycle attractors

Taking

$$
a(p)=\inf A(p) \quad \text { and } \quad b(p)=\sup A(p) \quad \text { for any } p \in P
$$

$a(p)$ and $b(p)$ are semicontinuous equilibria for τ and

$$
\mathbb{A} \subseteq \bigcup_{p \in P}\{p\} \times[a(p), b(p)]
$$

With condition (c4), $a(p)=-b(p)$ and we just study $b(p)$.

On the structure of the attractor \mathbb{A}

The study heavily relies upon the dynamical study of the linear problems.
Theorem: Basically, there are two situations:

- If $h \in B(P \times \bar{U}), \mathbb{A}$ is a wide set: there is an $r_{*}>0$ such that

$$
A(p)=\left\{r \widehat{e}(p)| | r \mid \leq r_{*}\right\} \subset X_{1}(p) \quad \text { for any } p \in P
$$

for a strongly positive continuous equilibrium $\widehat{e}: P \rightarrow C(\bar{U})_{+}$ of the linear problem.

On the structure of the attractor \mathbb{A}

The study heavily relies upon the dynamical study of the linear problems.
Theorem: Basically, there are two situations:

- If $h \in B(P \times \bar{U}), \mathbb{A}$ is a wide set: there is an $r_{*}>0$ such that

$$
A(p)=\left\{r \widehat{e}(p)| | r \mid \leq r_{*}\right\} \subset X_{1}(p) \quad \text { for any } p \in P
$$

for a strongly positive continuous equilibrium $\widehat{e}: P \rightarrow C(\bar{U})_{+}$ of the linear problem.

- If $h \in \mathcal{U}(P \times \bar{U}), \mathbb{A}$ is a pinched set with a complex dynamical structure. In some cases, the attractor is chaotic.

Theorem:
(i) There exists an invariant residual set $P_{\mathrm{s}} \subsetneq P$ such that $b(p)=0$ for any $p \in P_{\mathrm{s}}$.
(ii) The set $P_{\mathrm{f}}=P \backslash P_{\mathrm{s}}$ is an invariant dense set of first category and $b(p) \gg 0$ for any $p \in P_{\mathrm{f}}$.

Theorem:
(i) There exists an invariant residual set $P_{\mathrm{s}} \subsetneq P$ such that $b(p)=0$ for any $p \in P_{\mathrm{s}}$.
(ii) The set $P_{\mathrm{f}}=P \backslash P_{\mathrm{s}}$ is an invariant dense set of first category and $b(p) \gg 0$ for any $p \in P_{\mathrm{f}}$.

How complex can the dynamics inside \mathbb{A} be?

Chaotic dynamics when $\nu\left(P_{\mathrm{f}}\right)=1$

Theorem: The global attractor \mathbb{A} is fiber-chaotic in measure in the sense of Li-Yorke, that is, there exists a set $P_{\text {ch }} \subset P$ of full measure such that for every $p \in P_{\text {ch }}$, every pair $z_{1}, z_{2} \in A(p)$ $\left(z_{1} \neq z_{2}\right)$ is a (fiber) Li-Yorke pair:

$$
\begin{aligned}
& \liminf _{t \rightarrow \infty}\left\|u\left(t, p, z_{2}\right)-u\left(t, p, z_{1}\right)\right\|=0 \\
& \limsup _{t \rightarrow \infty}\left\|u\left(t, p, z_{2}\right)-u\left(t, p, z_{1}\right)\right\|>0
\end{aligned}
$$

Discontinuous non-autonomous bifurcation results

One-parametric family $(\gamma \in \mathbb{R})$ of scalar reaction-diffusion problems over a minimal, uniquely ergodic and aperiodic flow (P, \cdot, \mathbb{R}), with Neumann or Robin boundary conditions, given for each $p \in P$ by

$$
\left\{\begin{array}{l}
\frac{\partial y}{\partial t}=\Delta y+(\gamma+h(p \cdot t, x)) y+g(p \cdot t, x, y), \quad t>0, x \in U \\
\alpha(x) y+\frac{\partial y}{\partial n}=0, \quad t>0, \quad x \in \partial U
\end{array}\right.
$$

where $h \in \mathcal{U}(P \times \bar{U})$ and $g: P \times \bar{U} \times \mathbb{R} \rightarrow \mathbb{R}$ is continuous, of class C^{1} with respect to y, it satisfies conditions (c1)-(c5) and also (c6) $g(p, x, y)$ is convex in y for $y \leq 0$ and concave in y for $y \geq 0$.

A non-autonomous version of the Chafee-Infante equation

For instance, g might be the map

$$
g(p, x, y)=\left\{\begin{array}{lr}
k(p, x)\left(y+r_{0}\right)^{3}, & y \leq-r_{0} \\
0, & -r_{0} \leq y \leq r_{0} \\
-k(p, x)\left(y-r_{0}\right)^{3}, & y \geq r_{0}
\end{array}\right.
$$

for a positive map $k \in C(P \times \bar{U})$ and the constant r_{0} in (c5).
Chafee, Infante, A bifurcation problem for a nonlinear partial differential equation of parabolic type, Applicable Anal. 4 (1974).

Some non-autonomous versions of this equation together with bifurcation problems: Carvalho, Langa, Robinson, Structure and bifurcation of pullback attractors in a non-autonomous Chafee-Infante equation, Proc. Amer. Math. Soc. 140 (2012).

Notation: \mathbb{A}_{γ} is the global attractor of the skew-product semiflow τ_{γ} for the value $\gamma \in \mathbb{R}$ and b_{γ} is its upper boundary map.

Notation: \mathbb{A}_{γ} is the global attractor of the skew-product semiflow τ_{γ} for the value $\gamma \in \mathbb{R}$ and b_{γ} is its upper boundary map.

Theorem:
(i) If $\gamma<0$, then $\mathbb{A}_{\gamma}=P \times\{0\}$ is the global attractor and it is globally exponentially stable.

The cases $\gamma<0$ and $\gamma>0$: in Cardoso, Langa and Obaya (2016).

Notation: \mathbb{A}_{γ} is the global attractor of the skew-product semiflow τ_{γ} for the value $\gamma \in \mathbb{R}$ and b_{γ} is its upper boundary map.

Theorem:
(i) If $\gamma<0$, then $\mathbb{A}_{\gamma}=P \times\{0\}$ is the global attractor and it is globally exponentially stable.
(ii) If $\gamma=0$, then the global attractor
$\mathbb{A}_{0} \subseteq \bigcup_{p \in P}\{p\} \times\left[-b_{0}(p), b_{0}(p)\right]$ is a pinched set which contains a unique minimal set $P \times\{0\}$. If $\nu\left(P_{\mathrm{f}}\right)=1$, then \mathbb{A}_{0} is fiber-chaotic in measure in the sense of Li-Yorke.

The cases $\gamma<0$ and $\gamma>0$: in Cardoso, Langa and Obaya (2016).

Notation: \mathbb{A}_{γ} is the global attractor of the skew-product semiflow τ_{γ} for the value $\gamma \in \mathbb{R}$ and b_{γ} is its upper boundary map.
Theorem:
(i) If $\gamma<0$, then $\mathbb{A}_{\gamma}=P \times\{0\}$ is the global attractor and it is globally exponentially stable.
(ii) If $\gamma=0$, then the global attractor
$\mathbb{A}_{0} \subseteq \bigcup_{p \in P}\{p\} \times\left[-b_{0}(p), b_{0}(p)\right]$ is a pinched set which contains a unique minimal set $P \times\{0\}$. If $\nu\left(P_{\mathrm{f}}\right)=1$, then \mathbb{A}_{0} is fiber-chaotic in measure in the sense of Li-Yorke.
(iii) If $\gamma>0$, then the global attractor
$\mathbb{A}_{\gamma} \subseteq \bigcup_{p \in P}\{p\} \times\left[-b_{\gamma}(p), b_{\gamma}(p)\right]$ with $b_{\gamma}(p) \gg 0$ for every $p \in P$ and the maps $\pm b_{\gamma}$ define continuous equilibria. The copies of the base $K_{\gamma}^{ \pm}=\left\{\left(p, \pm b_{\gamma}(p)\right) \mid p \in P\right\}$ are globally exponentially stable minimal sets in $P \times \operatorname{Int} X_{ \pm}$, whereas the minimal set $P \times\{0\}$ is unstable.
The cases $\gamma<0$ and $\gamma>0$: in Cardoso, Langa and Obaya (2016).

THANK YOU FOR YOUR ATTENTION :)

