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Family of scalar linear-dissipative parabolic PDEs over P

Given a minimal, uniquely ergodic and aperiodic flow (P, ·,R) over
a compact metric space P, for each p ∈ P we consider the problem
for y(t, x) with Neumann or Robin boundary conditions:

∂y

∂t
= ∆ y + h(p·t, x) y + g(p·t, x , y) , t > 0 , x ∈ U,

α(x) y +
∂y

∂n
= 0 , t > 0 , x ∈ ∂U,

where:

x ∈ Ū ⊂ Rm (m ≥ 1) the spatial domain;

h : P × Ū → R determines the linear term;

g : P × Ū × R→ R is the dissipative term;

α : ∂U → R is sufficiently regular and nonnegative;

∂/∂n is the outward normal derivative at the boundary.



We start with the dynamics in the linear case

Associated linear problems, for each p ∈ P,
∂y

∂t
= ∆ y + h(p·t, x) y , t > 0 , x ∈ U,

α(x) y +
∂y

∂n
= 0 , t > 0 , x ∈ ∂U,

where h ∈ C (P × Ū).



To the IBV problem for each p ∈ P and z ∈ C (Ū),
∂y

∂t
= ∆ y + h(p·t, x) y , t > 0 , x ∈ U,

α(x) y +
∂y

∂n
= 0 , t > 0 , x ∈ ∂U,

y(0, x) = z(x) , x ∈ Ū,

we associate an abstract linear Cauchy problem in C (Ū),{
v ′(t) = Av(t) + h̃(p·t) v(t) , t > 0 ,
v(0) = z ,

(1)

with h̃ : P → C (Ū), h̃(p)(x) = h(p, x) for x ∈ Ū.

This problem has a unique mild solution: a continuous map
v(t) = v(t, p, z) : [0,∞)→ C (Ū) which satisfies the integral
equation

v(t) = etA z +

∫ t

0
e(t−s)A h̃(p·s) v(s) ds , t ≥ 0 .
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The linear skew-product semiflow induced by mild solutions

Mild solutions induce a globally-defined continuous linear
skew-product semiflow

τL : R+ × P × C (Ū) −→ P × C (Ū)
(t, p, z) 7→ (p·t, φ(t, p) z) ,

where φ(t, p) z = v(t, p, z), the mild solution for the linear
problem given by p with initial condition given by z .

The operators φ(t, p) : C (Ū)→ C (Ū) satisfy:

(i) Linear semicocycle property:

φ(t + s, p) = φ(t, p·s)φ(s, p) , p ∈ P, t, s ≥ 0;

(ii) For p ∈ P and t > 0, they are compact and strongly positive:
if z > 0, then φ(t, p) z � 0.

Remark: for n−dimensional systems, additional conditions are
needed.
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A key property: the linear semiflow admits a continuous
separation

This result comes as a step by step generalization of a previous
result:

(i) The Perron-Frobenius theorem (1907–1909):
finite-dimensional case, i.e., nonnegative and irreducible n × n
matrices;

(ii) The Krein-Rutman theorem (1950): infinite-dimensional case,
A : X → X compact and strongly positive linear operator on
the strongly ordered Banach space X ;

(iii) Poláčik and Tereščák (1993): the result for vector bundle
maps on P × X ;

(iv) Shen and Yi (1998): the result for linear skew-product
semiflows on P × X .
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The linear semiflow admits a continuous separation

There are two families of subspaces {X1(p)}p∈P and {X2(p)}p∈P
of C (Ū) which satisfy:

(1) C (Ū) = X1(p)⊕ X2(p), with a continuous variation in P;

(2) X1(p) = 〈e(p)〉, with e(p)� 0 and ‖e(p)‖ = 1 for any p ∈ P;

(3) X2(p) ∩ C (Ū)+ = {0} for any p ∈ P;

(4) for any t > 0, p ∈ P,

φ(t, p)X1(p) = X1(p·t) ,

φ(t, p)X2(p) ⊆ X2(p·t) ;

(5) there are M > 0, δ > 0 such that for any p ∈ P, z ∈ X2(p)
with ‖z‖ = 1 and t > 0,

‖φ(t, p) z‖ ≤ M e−δt‖φ(t, p) e(p)‖ .



Principal bundle and principal spectrum (Mierczyński and
Shen, 2004)

The principal bundle is the 1-dim invariant subbundle⋃
p∈P
{p} × X1(p) .

The principal spectrum Σpr is the Sacker-Sell spectrum or
continuous spectrum of the restriction of τL to the principal
bundle. In general Σpr = [αP , λP ].

When P is uniquely ergodic, Σpr = {λP}, for the upper
Lyapunov exponent λP .
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The associated 1-dimensional linear cocycle c(t, p)

To each linear coefficient h ∈ C (P × Ū) we associate a 1-dim
linear semicocycle c(t, p), the one driving the dynamics of τL when
restricted to the principal bundle, i.e., c(t, p) is the positive
number such that

φ(t, p) e(p) = c(t, p) e(p·t) , t ≥ 0 , p ∈ P .

c(t, p) can be extended to a linear cocycle

c(t + s, p) = c(t, p·s) c(s, p) , p ∈ P, t, s ∈ R ,

by taking c(−t, p) = 1/c(t, p·(−t)) for any t > 0 and p ∈ P.

Besides,

λP = lim sup
t→∞

ln c(t, p)

t
for each p ∈ P .



The associated 1-dimensional linear cocycle c(t, p)

To each linear coefficient h ∈ C (P × Ū) we associate a 1-dim
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The case of null upper Lyapunov exponent: λP = 0

Let C0(P × Ū) = {h ∈ C (P × Ū) | λP(h) = 0}.
Theorem: It is a complete metric space.

We classify the maps h ∈ C0(P × Ū) depending on whether the
associated 1-dim cocycle c(t, p) is “bounded” or not:

B(P × Ū) = {h ∈ C0(P × Ū) | sup
t∈R
| ln c(t, p)| <∞ for any p ∈ P} ,

U(P × Ū) = C0(P × Ū) \ B(P × Ū) .

Remark: if the flow on P is periodic, then C0(P × Ū) = B(P × Ū).
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Some results for general positive linear 1-dim cocycles-I

Theorem (in line with the classical result by Gottschalk and
Hedlund (1955) for maps in C0(P) =

{
a ∈ C (P) |

∫
P a dν = 0

}
).

The following conditions are equivalent:

(i) For any p ∈ P, supt∈R | ln c(t, p)| <∞.

(ii) There exists a p0 ∈ P such that supt∈R | ln c(t, p0)| <∞.

(iii) There exists a p0 ∈ P such that

either sup
t≥0
| ln c(t, p0)| <∞ or sup

t≤0
| ln c(t, p0)| <∞ .

(iv) There exists a function k ∈ C (P) such that

k(p·t)− k(p) = ln c(t, p) for all p ∈ P, t ∈ R .



Some results for general positive linear 1-dim cocycles-II

Theorem (in line with the oscillation result by Johnson (1978) for
maps in C0(P) with unbounded primitive).

If the associated 1-dim linear cocycle c(t, p) does not satisfy the
previous conditions, then there exists an invariant and residual set
Po ⊂ P such that for any p ∈ Po,

lim inf
t→±∞

c(t, p) = 0 ,

lim sup
t→±∞

c(t, p) =∞ .



Dynamics of the linear semiflow when λP = 0

If h ∈ B(P × Ū):

(i) For z > 0, bounded orbits both above and away from 0.

(ii) There is a strongly positive continuous equilibrium
ê : P → IntC (Ū)+, ê(p·t) = φ(t, p) ê(p) for p ∈ P, t ≥ 0
(thus, infinitely many).

If h ∈ U(P × Ū):

(i) There is an invariant and residual set Po ⊂ P such that for
any p ∈ Po and any z > 0, the orbit φ(t, p) z has a strong
oscillating behaviour:

lim inf
t→∞

‖φ(t, p) z‖ = 0 and lim sup
t→∞

‖φ(t, p) z‖ =∞ .

(ii) There is a pinched invariant compact set in
P × (IntC (Ū)+ ∪ {0}).

U(P × Ū) is a residual set in C0(P × Ū).
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Dynamics of the linear semiflow when λP = 0

If h ∈ B(P × Ū):
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Back to the linear-dissipative problems

Given a minimal, uniquely ergodic and aperiodic flow (P, ·,R) over
a compact metric space P, for each p ∈ P we consider the problem
for y(t, x) with Neumann or Robin boundary conditions:

∂y

∂t
= ∆ y + h(p·t, x) y + g(p·t, x , y) , t > 0 , x ∈ U,

α(x) y +
∂y

∂n
= 0 , t > 0 , x ∈ ∂U.

With h ∈ C (P × Ū) and g : P × Ū × R→ R continuous and of
class C 1 with respect to y , arguing as in the linear case, one can
build the associated skew-product semiflow induced by mild
solutions. In principle it is only locally defined.

τ : R+ × P × C (Ū) −→ P × C (Ū)
(t, p, z) 7→ (p·t, u(t, p, z))



Assumptions

We assume that h ∈ C0(P × Ū) and for the non-linear term g :

(c1) g(p, x , 0) =
∂g

∂y
(p, x , 0) = 0 for any p ∈ P and x ∈ Ū;

(c2) y g(p, x , y) ≤ 0 for any p ∈ P, x ∈ Ū and y ∈ R;

(c3) lim
|y |→∞

g(p, x , y)

y
= −∞ uniformly on P × Ū;

(c4) g(p, x ,−y) = −g(p, x , y) for any p ∈ P, x ∈ Ū and y ∈ R;

(c5) there exists an r0 > 0 such that g(p, x , y) = 0 if and only if
|y | ≤ r0.

The skew-product semiflow is globally defined and strongly
monotone.

With a general h ∈ C (P × Ū) and conditions (c1)-(c3) Cardoso,
Langa and Obaya (2016) prove the existence of a compact
absorbing set, so that there is a global attractor A ⊂ P × C (Ū).
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The global attractor A and the cocycle attractor

A ⊂ P × C (Ū) is a compact set;

A is invariant: τt(A) = A for any t ≥ 0;

A (forwards) attracts bounded sets B ⊂ P × C (Ū):
limt→∞ dist(τt(B),A) = 0 for the Hausdorff distance.

Since P is compact and A is the global attractor, the
non-autonomous set {A(p)}p∈P given by

A(p) = {z ∈ C (Ū) | (p, z) ∈ A}

is the cocycle attractor:

it is compact: every A(p) is compact in C (Ū);

it is invariant: for p ∈ P, u(t, p,A(p)) = A(p·t) for t ≥ 0;

it pullback attracts all bounded subsets B ⊂ C (Ū), that is,

lim
t→∞

dist(u(t, p·(−t),B),A(p)) = 0 for any p ∈ P .
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it is invariant: for p ∈ P, u(t, p,A(p)) = A(p·t) for t ≥ 0;

it pullback attracts all bounded subsets B ⊂ C (Ū), that is,
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Global and cocycle attractors

Taking

a(p) = inf A(p) and b(p) = supA(p) for any p ∈ P,

a(p) and b(p) are semicontinuous equilibria for τ and

A ⊆
⋃
p∈P
{p} × [a(p), b(p)] .

With condition (c4), a(p) = −b(p) and we just study b(p).



On the structure of the attractor A

The study heavily relies upon the dynamical study of the linear
problems.

Theorem: Basically, there are two situations:

If h ∈ B(P × Ū), A is a wide set: there is an r∗ > 0 such that

A(p) = {r ê(p) | |r | ≤ r∗} ⊂ X1(p) for any p ∈ P,

for a strongly positive continuous equilibrium ê : P → C (Ū)+

of the linear problem.

If h ∈ U(P × Ū), A is a pinched set with a complex dynamical
structure. In some cases, the attractor is chaotic.
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The attractor when h ∈ U(P × Ū)

Theorem:

(i) There exists an invariant residual set Ps ( P such that
b(p) = 0 for any p ∈ Ps.

(ii) The set Pf = P \ Ps is an invariant dense set of first category
and b(p)� 0 for any p ∈ Pf .

How complex can the dynamics inside A be?
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Chaotic dynamics when ν(Pf) = 1

Theorem: The global attractor A is fiber-chaotic in measure in the
sense of Li-Yorke, that is, there exists a set Pch ⊂ P of full
measure such that for every p ∈ Pch, every pair z1, z2 ∈ A(p)
(z1 6= z2) is a (fiber) Li-Yorke pair:

lim inf
t→∞

‖u(t, p, z2)− u(t, p, z1)‖ = 0 ,

lim sup
t→∞

‖u(t, p, z2)− u(t, p, z1)‖ > 0 .



Discontinuous non-autonomous bifurcation results

One-parametric family (γ ∈ R) of scalar reaction-diffusion problems
over a minimal, uniquely ergodic and aperiodic flow (P, ·,R), with
Neumann or Robin boundary conditions, given for each p ∈ P by

∂y

∂t
= ∆ y + (γ + h(p·t, x)) y + g(p·t, x , y) , t > 0 , x ∈ U,

α(x) y +
∂y

∂n
= 0 , t > 0 , x ∈ ∂U,

where h ∈ U(P× Ū) and g : P× Ū×R→ R is continuous, of class
C 1 with respect to y , it satisfies conditions (c1)-(c5) and also

(c6) g(p, x , y) is convex in y for y ≤ 0 and concave in y for y ≥ 0.



A non-autonomous version of the Chafee-Infante equation

For instance, g might be the map

g(p, x , y) =


k(p, x) (y + r0)3 , y ≤ −r0
0 , −r0 ≤ y ≤ r0
−k(p, x) (y − r0)3 , y ≥ r0

for a positive map k ∈ C (P × Ū) and the constant r0 in (c5).

Chafee, Infante, A bifurcation problem for a nonlinear partial
differential equation of parabolic type, Applicable Anal. 4 (1974).

Some non-autonomous versions of this equation together with
bifurcation problems: Carvalho, Langa, Robinson, Structure
and bifurcation of pullback attractors in a non-autonomous
Chafee-Infante equation, Proc. Amer. Math. Soc. 140 (2012).



Notation: Aγ is the global attractor of the skew-product semiflow
τγ for the value γ ∈ R and bγ is its upper boundary map.

Theorem:

(i) If γ < 0, then Aγ = P × {0} is the global attractor and it is
globally exponentially stable.

(ii) If γ = 0, then the global attractor
A0 ⊆

⋃
p∈P{p} × [−b0(p), b0(p)] is a pinched set which

contains a unique minimal set P × {0}. If ν(Pf) = 1, then A0

is fiber-chaotic in measure in the sense of Li-Yorke.

(iii) If γ > 0, then the global attractor
Aγ ⊆

⋃
p∈P{p} × [−bγ(p), bγ(p)] with bγ(p)� 0 for every

p ∈ P and the maps ±bγ define continuous equilibria. The
copies of the base K±γ = {(p,±bγ(p)) | p ∈ P} are globally
exponentially stable minimal sets in P × IntX±, whereas the
minimal set P × {0} is unstable.

The cases γ < 0 and γ > 0: in Cardoso, Langa and Obaya (2016).
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