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Family of scalar linear-dissipative parabolic PDEs over P

Given a minimal, uniquely ergodic and aperiodic flow (P, -, R) over
a compact metric space P, for each p € P we consider the problem
for y(t, x) with Neumann or Robin boundary conditions:

0
S =Ay+hptx)y+elptxy), t>0, xeU,

dy
a(x)y—l—an—O, t>0, xedU,

where:
x € U CR™ (m > 1) the spatial domain;
h: P x U — R determines the linear term;
g: P x UxR — Ris the dissipative term;
a : QU — R is sufficiently regular and nonnegative;

0/0n is the outward normal derivative at the boundary.



We start with the dynamics in the linear case

Associated linear problems, for each p € P,

g};:Ay+h(p-t,x)y, t>0, xe U,
oz(x)y—i—a—y 0, t>0, xeoU,

on
where h € C(P x U).



To the IBV problem for each p € P and z € C(U),

?;:Ay—i—h(p-t,x)y, t>0, xe U,
0
a(x)y+fy:0, t>0, xedU,

on ~
y(0,x) =z(x), xeU,

we associate an abstract linear Cauchy problem in C(U),

{ Z'(Ot))::;v(t)—l—il(p-t) v(t), t>0, 1)

with h: P — C(0), h(p)(x) = h(p, x) for x € U.



To the IBV problem for each p € P and z € C(U),

?;:Ay—i—h(p-t,x)y, t>0, xe U,
0
a(x)y+fy:0, t>0, xedU,

on ~
y(0,x) =z(x), xeU,

we associate an abstract linear Cauchy problem in C(U),

{ Z;%t)):iv(t)+ﬁ(p-t) v(t), t>0, 1)

with h: P — C(0), h(p)(x) = h(p, x) for x € U.

This problem has a unique mild solution: a continuous map

v(t) = v(t,p,z) : [0,00) = C(U) which satisfies the integral
equation

t
V(t) = etz 4 / DA T(p.s) v(s)ds, t>0.
0



The linear skew-product semiflow induced by mild solutions

Mild solutions induce a globally-defined continuous linear
skew-product semiflow

1 RyxPxCU) — PxC(U)
(t,p,2) = (pt,9(t,p)2),

where ¢(t, p) z = v(t, p, z), the mild solution for the linear
problem given by p with initial condition given by z.
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The linear skew-product semiflow induced by mild solutions

Mild solutions induce a globally-defined continuous linear
skew-product semiflow

1 RyxPxCU) — PxC(U)
(t,p,2) = (pt,9(t,p)2),

where ¢(t, p) z = v(t, p, z), the mild solution for the linear
problem given by p with initial condition given by z.

The operators ¢(t, p) : C(U) — C(U) satisfy:
(i) Linear semicocycle property:
o(t+s,p) = @(t.ps)p(s,p), pEP, t,s>0;

(i) For p€ P and t > 0, they are compact and strongly positive:
if z> 0, then ¢(t,p)z > 0.

Remark: for n—dimensional systems, additional conditions are
needed.



A key property: the linear semiflow admits a continuous

separation

This result comes as a step by step generalization of a previous
result:

(i) The Perron-Frobenius theorem (1907-1909):

finite-dimensional case, i.e., nonnegative and irreducible n x n
matrices;
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This result comes as a step by step generalization of a previous
result:

(i) The Perron-Frobenius theorem (1907-1909):
finite-dimensional case, i.e., nonnegative and irreducible n x n
matrices;

(i) The Krein-Rutman theorem (1950): infinite-dimensional case,
A: X — X compact and strongly positive linear operator on
the strongly ordered Banach space X;

(iii) Polatik and Teres¢ak (1993): the result for vector bundle
maps on P x X;

(iv) Shen and Yi (1998): the result for linear skew-product
semiflows on P x X.



The linear semiflow admits a continuous separation

There are two families of subspaces {X1(p)}pep and {Xa(p)}pep
of C(U) which satisfy:

(1) C(U) = X1(p) ® Xa(p), with a continuous variation in P;
(2) Xu(p) = {e(p)), with e(p) > 0 and [|e(p)]| = 1 for any p € P;
(3) Xa(p) N C(U)4 = {0} for any p € P;

(4) forany t >0, p € P,

o(t, p)Xi(p) = Xi(p-t),
o(t, p)Xa(p) C Xa(p-t);

(5) there are M > 0, 6 > 0 such that for any p € P, z € X5(p)
with ||z]] =1 and t > 0,

lo(t, p) 2| < Me™|lg(t, p) e(p)ll



Principal bundle and principal spectrum (Mierczynski and

Shen, 2004)

@ The principal bundle is the 1-dim invariant subbundle

U {p} x Xa(p)-

peP
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Principal bundle and principal spectrum (Mierczynski and

Shen, 2004)

@ The principal bundle is the 1-dim invariant subbundle

U {p} x Xa(p)-

peP

@ The principal spectrum ¥, is the Sacker-Sell spectrum or
continuous spectrum of the restriction of 7, to the principal
bundle. In general X, = [ap, Ap].

e When P is uniquely ergodic, X = {Ap}, for the upper
Lyapunov exponent Ap.



The associated 1-dimensional linear cocycle c(t, p)

To each linear coefficient h € C(P x U) we associate a 1-dim
linear semicocycle c(t, p), the one driving the dynamics of 7, when
restricted to the principal bundle, i.e., c(t, p) is the positive
number such that

o(t,p)e(p) = c(t,p)e(p-t), t=0,peP.
c(t, p) can be extended to a linear cocycle
c(t+s,p)=c(t,p-s)c(s,p), pEP, t,scR,

by taking c(—t,p) = 1/c(t, p-(—t)) forany t >0 and p € P.



The associated 1-dimensional linear cocycle c(t, p)

To each linear coefficient h € C(P x U) we associate a 1-dim
linear semicocycle c(t, p), the one driving the dynamics of 7, when
restricted to the principal bundle, i.e., c(t, p) is the positive
number such that

o(t,p)e(p) = c(t,p)e(p-t), t=0,peP.
c(t, p) can be extended to a linear cocycle
c(t+s,p)=c(t,p-s)c(s,p), pEP, t,scR,

by taking c(—t,p) = 1/c(t, p-(—t)) forany t >0 and p € P.
Besides,

Ap = limsup
t—o0

foreachp e P.

Inc(t, p)
t



The case of null upper Lyapunov exponent: A\p =0

Let Go(P x U) = {he C(P x U) | Ap(h) = 0}.
Theorem: It is a complete metric space.
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The case of null upper Lyapunov exponent: A\p =0

Let Go(P x U) = {he C(P x U) | Ap(h) = 0}.
Theorem: It is a complete metric space.

We classify the maps h € Co(P x U) depending on whether the
associated 1-dim cocycle ¢(t, p) is “bounded” or not:

B(P x U) ={he€ Co(P x U) | sup|Inc(t,p)| < oo forany p € P},
teR
UP x U) = Co(Px U)\ B(Px U).

Remark: if the flow on P is periodic, then Co(P x U) = B(P x U).



Some results for general positive linear 1-dim cocycles-I

Theorem (in line with the classical result by Gottschalk and
Hedlund (1955) for maps in Co(P) = {a € C(P) | [, adv =0}).
The following conditions are equivalent:

(i) For any p € P, sup;cg | Inc(t, p)| < oc.
(ii) There exists a py € P such that sup,cp | In c(t, po)| < oc.
(iii) There exists a pp € P such that

either sup|Inc(t, po)| < oo or sup|inc(t,po)| < co.
t>0 t<0

(iv) There exists a function k € C(P) such that

k(p-t) — k(p) =Inc(t,p) forall pe P, t eR.



Some results for general positive linear 1-dim cocycles-I|

Theorem (in line with the oscillation result by Johnson (1978) for
maps in Co(P) with unbounded primitive).
If the associated 1-dim linear cocycle c(t, p) does not satisfy the

previous conditions, then there exists an invariant and residual set
P, C P such that for any p € P,,

Itlinu;cfc(t p) =0,

limsup c(t,p) = oco.
t—+o0



Dynamics of the linear semiflow when A\p =0

If he B(P x U):
(i) For z > 0, bounded orbits both above and away from 0.

(ii) There is a strongly positive continuous equilibrium

e:P—IntC(U)4, e(pt)=o(t,p)e(p) forpe P, t >0
(thus, infinitely many).
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(ii) There is a pinched invariant compact set in

P x (Int C(0)4 U {0}).



Dynamics of the linear semiflow when A\p =0

If he B(P x U):
(i) For z > 0, bounded orbits both above and away from 0.

(ii) There is a strongly positive continuous equilibrium

e:P—IntC(U)4, e(pt)=o(t,p)e(p) forpe P, t >0
(thus, infinitely many).
If heU(P x U):

(i) There is an invariant and residual set P, C P such that for
any p € P, and any z > 0, the orbit ¢(t, p) z has a strong
oscillating behaviour:

liminf ||¢(t,p)z|| =0 and limsup ||¢(t,p)z| = oco.
t—0o0 t—o0

(ii) There is a pinched invariant compact set in

P x (Int C(0)4 U {0}).
U(P x U) is a residual set in Co(P x U).



Back to the linear-dissipative problems

Given a minimal, uniquely ergodic and aperiodic flow (P, -, R) over
a compact metric space P, for each p € P we consider the problem
for y(t,x) with Neumann or Robin boundary conditions:

0

67);:Ay+h(P‘t,X)y+g(P't,X,}/), t>05 XEUa
dy
— =0, t>0 ou.

a(x)y + o , >0, x€

With h€ C(P x U) and g : P x U x R — R continuous and of

class C! with respect to y, arguing as in the linear case, one can

build the associated skew-product semiflow induced by mild

solutions. In principle it is only locally defined.

7 Ry xPxCU) — PxC()
(t,p,Z) = (p'ta U(t,p72))



We assume that h € Co(P x U) and for the non-linear term g:

0 _
g(p,x,0) = g(p,x70):Oforanyp€Pande U;

dy
(c2) yg(p,x,y) <0forany pc P, x € U and y € R;

(c1)
)

(3) lim EPXY) _
)
)

—o00 uniformly on P x U;
lyl—=o00 y

(c4) g(p,x,—y) = —g(p,x,y) forany pc P, x € U and y € R;

(c5 there exists an ry > 0 such that g(p, x,y) = 0 if and only if

ly| < ro.
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We assume that h € Co(P x U) and for the non-linear term g:

0 _
(cl) g(p,x,0) = ag(p,xjo)zofor any p € P and x € U;

)
(c2) yg(p,x,y) <0forany pc P, x € U and y € R;
(c3) lim g(p.x.y) _
)
)

—o00 uniformly on P x U;

lyl—=o00 y
(c4) g(p,x,—y) = —g(p,x,y) forany pc P, x € U and y € R;
(c5 there exists an ry > 0 such that g(p, x,y) = 0 if and only if

ly| < ro.

The skew-product semiflow is globally defined and strongly
monotone.

With a general h € C(P x U) and conditions (c1)-(c3) Cardoso,
Langa and Obaya (2016) prove the existence of a compact B
absorbing set, so that there is a global attractor A C P x C(U).



The global attractor A and the cocycle attractor

@ AC P x C(U) is a compact set;
e Ais invariant: 7t(A) = A for any t > 0;

e A (forwards) attracts bounded sets B C P x C(U):
lim;_y00 dist(7¢(B), A) = 0 for the Hausdorff distance.



The global attractor A and the cocycle attractor

@ AC P x C(U)is a compact set;
e Ais invariant: 7t(A) = A for any t > 0;

e A (forwards) attracts bounded sets B C P x C(U):
lim;_y00 dist(7¢(B), A) = 0 for the Hausdorff distance.

Since P is compact and A is the global attractor, the
non-autonomous set {A(p)}pcp given by

Alp) ={ze C(U) | (p.2) € A}

is the cocycle attractor:
e it is compact: every A(p) is compact in C(U);
e it is invariant: for p € P, u(t, p, A(p)) = A(p-t) for t > 0;
o it pullback attracts all bounded subsets B  C(U), that is,
lim dist(u(t, p-(—t),B),A(p)) =0 foranype P.

t—00



Global and cocycle attractors

Taking
a(p) =infA(p) and b(p) =supA(p) forany pe P,

a(p) and b(p) are semicontinuous equilibria for 7 and

A< J{p} xalp), b(p)].

peP

With condition (c4), a(p) = —b(p) and we just study b(p).



On the structure of the attractor A

The study heavily relies upon the dynamical study of the linear
problems.

Theorem: Basically, there are two situations:
o If he B(P x U), A is a wide set: there is an r, > 0 such that

A(p) = {re(p) | [r| < n} C Xi(p) forany pe P,

for a strongly positive continuous equilibrium €: P — C(U)
of the linear problem.



On the structure of the attractor A

The study heavily relies upon the dynamical study of the linear
problems.

Theorem: Basically, there are two situations:
o If he B(P x U), A is a wide set: there is an r, > 0 such that

A(p) ={re(p) | Ir| < rn} C Xi(p) forany pe P,
for a strongly positive continuous equilibrium €: P — C(U)
of the linear problem.

o If hcU(P x U), A is a pinched set with a complex dynamical
structure. In some cases, the attractor is chaotic.



The attractor when h € U(P x U)

Theorem:

(i) There exists an invariant residual set P C P such that
b(p) = 0 for any p € P.

(i) The set Pr = P\ Py is an invariant dense set of first category
and b(p) > 0 for any p € Ps.



The attractor when h € U(P x U)

Theorem:

(i) There exists an invariant residual set P C P such that
b(p) = 0 for any p € P.

(i) The set Pr = P\ Py is an invariant dense set of first category
and b(p) > 0 for any p € Ps.

How complex can the dynamics inside A be?



Chaotic dynamics when v(P;) =1

Theorem: The global attractor A is fiber-chaotic in measure in the
sense of Li-Yorke, that is, there exists a set Py, C P of full

measure such that for every p € Py, every pair z1,z € A(p)
(z1 # z2) is a (fiber) Li-Yorke pair:

liminf |u(t, p, z2) — u(t, p, 21)|| = 0,

limsup [|u(t, p, z2) — u(t, p,z1)|| > 0.
t—o00



Discontinuous non-autonomous bifurcation results

One-parametric family (v € R) of scalar reaction-diffusion problems
over a minimal, uniquely ergodic and aperiodic flow (P, -, R), with
Neumann or Robin boundary conditions, given for each p € P by

9 _
ot

Ay+(y+h(pt,x)y+glpt,x,y), t>0, xeU,
a(x)y + 2

a—zO, t>0, xeoU,
on

where h € U(P x U) and g : P x U x R — R is continuous, of class
C! with respect to y, it satisfies conditions (c1)-(c5) and also

(c6) g(p,x,y) is convex in y for y < 0 and concave in y for y > 0.



A non-autonomous version of the Chafee-Infante equation

For instance, g might be the map

k(p,x) (v + ro)?, y < —n
glp,x,y)=14 0, —rn<y<n
—k(p,x)(y — r0)*, y=n

for a positive map k € C(P x U) and the constant ry in (c5).

CHAFEE, INFANTE, A bifurcation problem for a nonlinear partial
differential equation of parabolic type, Applicable Anal. 4 (1974).

Some non-autonomous versions of this equation together with
bifurcation problems: CARVALHO, LANGA, ROBINSON, Structure
and bifurcation of pullback attractors in a non-autonomous
Chafee-Infante equation, Proc. Amer. Math. Soc. 140 (2012).
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The cases v < 0 and v > 0: in Cardoso, Langa and Obaya (2016).
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The cases v < 0 and v > 0: in Cardoso, Langa and Obaya (2016).



Notation: A. is the global attractor of the skew-product semiflow
7y for the value v € R and b, is its upper boundary map.

Theorem:

(i)
(ii)

(iiif)

If v <0, then A, = P x {0} is the global attractor and it is
globally exponentially stable.

If v =0, then the global attractor

Ao € Upep{p}t x [=bo(p), bo(p)] is a pinched set which
contains a unique minimal set P x {0}. If v(P¢) =1, then Ay
is fiber-chaotic in measure in the sense of Li-Yorke.

If v > 0, then the global attractor

Ay C Upepip} x [=by(p), by(p)] with by(p) > 0 for every
p € P and the maps +b, define continuous equilibria. The

copies of the base K3 = {(p,£b,(p)) | p € P} are globally
exponentially stable minimal sets in P x Int X1, whereas the
minimal set P x {0} is unstable.

The cases v < 0 and v > 0: in Cardoso, Langa and Obaya (2016).
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