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Regularization of discontinuous dynamical systems

Abstract

Discontinuous dynamical systems model many phenomena in control
theory, in mechanical friction and impacts, in hysteresis in electrical circuits and
plasticity, etc...

In these systems the phase space is divided into several regions where the system
takes different forms. Vector fields with jump discontinuities at the edges of
these regions -the switching manifolds- are usually named Filippov
Systems. The question is if one can define ”properly” a flow on the edges.

A regularization of a Filippov system is an embedding of it in a set of
parametric regular systems in such a manner that the discontinuous one
will be their limit, in a sense that defines a flow on the switching manifold.

But different regularization techniques can lead to different definitions of
the edge solutions. We present different examples of Filippov systems with
regularizations which produces qualitative different behaviour: a single degree dry
friction oscillator, a grazing-sliding saddle-node bifurcation and the different effect
of linear and nonlinear regularization of periodically forced oscillators.
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A dry friction oscillator

Let us consider a mass m attached to a spring with a constant of recovery K . The
mass is on a driving belt with constant velocity vd .

If x denotes the displacement of m with respect to the equilibrium position of the
spring K , on m act two forces: a force of resistance of the spring −Kx (assuming
the spring linear), and a friction force between the mass and the belt.
If we start from the equilibrium position x = 0, the mass will begin to move in
stick with the belt (stick phase) at velocity vd till the recovery force of the spring
−Kx compensate the static friction force and produce on m a damped harmonic
motion (slip phase) until that, by energy dissipation, the mass will be once more
in sticking with the belt, and so on.
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So the equations are divided according to whether or not the relative speed
between the mass and the belt, vr = ẋ − vd is zero, in two phases:

Stick phase (vr = 0), the equations are:

mẍ = −Kx + Fs(x),

where the friction static force is Fs(x) = min(|Kx |,Fs)sgn(Kx), and Fs is its
maximum value.
Note that if |Kx | < Fs , then ẍ = 0 and ẋ = vd , ie, m moves in sticking with
the belt until the force of the spring recovery reaches Fs . From this moment
on, m begins to oscillate on the belt. But now it enters into a state where
vr 6= 0 and there the frictional force depends on vr . The system is now in slip
phase.

Slip phase (vr 6= 0), the equations of motion are

mẍ = −Kx + Fd(vr ),

where Fd(vr ), represents the dynamic friction which has opposite sign to vr .

Carles Bonet (UPC) 4 / 37



Regularization of discontinuous dynamical systems

Now we consider two models of friction related to two different types of Fd(vr ).
Coulomb model. This model assumes that the dynamic friction is constant
and equal to the static friction.
Stiction model. This model assumes that static friction is greater than the
dynamic friction. When the spring reaches the value of static friction, the
frictional force falls instantaneously to a strictly less value.

Figure: Coulomb and Stiction models of friction
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The Coulomb model

If for simplicity we take m = K = vd = 1, the equations of motion for the
Coulomb model are:

ẍ = −x + min(|x |,Fs)sign(x), vr = 0(stick)

ẍ = −x − Fssign(vr ), vr 6= 0(slip)

The change y → y − 1 transforms the switching manifold in y = 0. Then we
have: A stick system on y = 0:

ẋ = y + 1
ẏ = −x + min(|x |,Fs)sgn(x),

}
y = 0 (ẏ = 0)

and a discontinuous slip system Z = (X ,Y ) on y 6= 0

ẋ = y + 1
ẏ = −x − Fs ,

}
y > 0, X+(x , y)

ẋ = y + 1
ẏ = −x + Fs ,

}
y < 0, X−(x , y)
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The Sotomayor-Teixeira regularization Zε of Z = (X+,X−) is defined by :

Zε(x , y) =
X+(x , y) + X−(x , y)

2
+ ϕ(

y

ε
)
X+(x , y)− X−(x , y)

2
, (1)

where ϕ is any increasing smooth function with:

ϕ(v) = −1, for v ≤ −1, ϕ(v) = 1, for v ≥ 1.

Note that in |y | ≥ ε the regularized vector field don’t change the fields X+,X−.
Then, in our case, the Sotomayor-Teixeira regularized system Zε(x , y) will be

ẋ = 1 + y
ẏ = −x − ϕ( y

ε )Fs ,

}
(2)

,
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Now we consider the strechted varible v = y
ε and the system transforms to:

ẋ = 1 + εv
εv̇ = −x − ϕ(v)Fs ,

}
This is a singular perturbed system. The curve x +ϕ(v)Fs = 0, named the critical
curve(manifold in the many dimensional case), is the limit as ε→ 0 of a
especial(s) solution(s)( slow manifold(s)) v = m(x ; ε), |x | < Fs which attracts
ε-exponentially a wide range of the phase space, as next figure shows.

Figure: the slow manifold in red. Fs = 2
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But y ≡ εv = εm(x ; ε), |x | < Fs is a solution of system (2) that exponentially
attracts any solution in its neighbourhood. Then we can consider the flow inside it
and obtain the regular equation ẋ = 1 + εm(x ; ε). And as ε→ 0 the flow of this
system tends to ẋ = 1, y = 0, which is the behaviour of the stick phase model.

But for the stiction model, the Sotomayor-Teixeira regularization is the same as
we did, and don’t provides its stick-behaviour. So we should perform other type of
regularization, namely, other class of funtion ϕ(v), with shape like
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The Sotomayor-Teixeira regularization of a fold

For simplicity consider the discontinuos system Z = (X ,Y ), where

X+(x , y) =

(
1
2x

)
, y > 0 (3)

and

X−(x , y) =

(
0
1

)
, y < 0. (4)

The Sotomayor-Teixeira regularization Zε of this vector field will be

ẋ = 1
2 (1 + ϕ( y

ε ))
ẏ = 1+2x

2 + 1
2ϕ( y

ε )(2x − 1).
(5)

with the change of variable y = εv we transform it in a singular perturbed system,
which is called the Slow system:

ẋ = 1+ϕ(v)
2

εv̇ = 1+2x
2 + 1

2ϕ(v)(2x − 1), (Slow system)
(6)
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Changing the time t = ετ we get the so called fast system:

x ′ = ε 1+ϕ(v)
2

v ′ = 1+2x
2 + 1

2ϕ(v)(2x − 1), (Fast system).
(7)

Note that for ε > 0 the two systems are equivalent, but the fast system is regular
and for ε = 0

x ′ = 0
v ′ = 1+2x

2 + 1
2ϕ(v)(2x − 1).

(8)

and has a curve ( manifold) of critical points (the slow manifold)

Λ0 = {(x , v), ϕ(v) =
1 + 2x

1− 2x
, x ≤ 0}. (9)

.
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Moreover, Λ0 is a normally hyperbolic attracting manifold of critical points for
x < 0 Then in any compact subset of the region x < 0, we can apply Fenichel
theory which ensures the existence of a normally hyperbolic attracting invariant
manifold Λε for ε small enough of system (7) (and (6))
But Λ0 bends and looses its hyperbolic character when x → 0. To track Λε beyond
x = 0 we match (7) with its transformation by the change x = ε

2
3 η = 1 + ε

1
3 u :

η̇ = 1 + O(ε
2
3 )

u̇ = 2η − ϕ′′(1)
4 u2 + O(ε

1
3 ),

(10)

then we can continue Λε, which near the fold has the expression:

x = ε
2
3 η0(

y − ε
ε

4
3

) + εη1(
y − ε
ε

4
3

) +O(ε
4
3 ), (11)

where η0(u) is the unique solution of the equation:

dη

du
=

1

2η − ϕ′′(1)
4 u2

, (12)

satisfying η(u) ∼ ϕ′′(1)
8 u2 as u → −∞. Note that in y = ε (v = 1) we have:

x = ε
2
3 η0(0) + εη1(0) +O(ε

4
3 ) (13)
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In [1] we proved that the flow coming from intervals [−L,−ελ], 0 < λ < 1
3 is

exponentially attracted by Λε that collects they and hits x > 0 at O(ε
2
3 ), as (13)

states. The results are summarized in the next picture. (Note −ε 1
3 < −ε 1

2 )

Figure: Dynamics of the regularized system Zε.The dotted red parabola is the trajectory
of X+ passing through the fold (0, 0). The large domain I is smashed to the small J
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The grazing-sliding saddle-node bifurcation

Consider Zµ, a family of non-smooth planar systems having a grazing sliding
bifurcation of a hyperbolic repelling periodic orbit Γµ of the vector field X+

µ at
µ = 0.

Figure: X+
µ has a repelling periodic orbit Γµ and X− = (0, 1)
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Now we perform the Sotomayor Teixeira regularization to this family Zµ,ε. In [1] we
proved that if Γµ is repelling the regularized system Zµ,ε has a bifurcation of periodic
orbits.
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Let us see where can be the bifurcation. From the behaviour near the fold we
conclude two facts:

For µ = 0 there is no periodic orbit. For µ = ε there are, at least, one
attracting periodic orbit besides the unstable.
If an orbit of the regularized system enters to the vault of the periodic orbit,
then it is trapped by the focus.
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Then the bifurcation will take place when 0 < µ < ε and, more precisely, when the
Fenichel solution(s) and the upper segment of the periodic orbit ”collide” in x > 0
at some order.

Put δ = ε− µ, and let x+
δ , the intersection on x > 0 of the periodic orbit Γµ.

Then as its tangency is a fold, we equate:

x+
δ =

√
ε− µ+ ... = ε

2
3 η0(0) + ...⇒ µ = ε− ε 4

3 η2
0(0) +O(ε

5
3 )

(14)

So the range of µ′s where the bifurcation will take place must be

µ1 := ε− ε 4
3 η2

0(0)− Kε
5
3 < µ < µ2 := ε− ε 4

3 η2
0(0) + Kε

5
3 (15)

with K as large as our conveniences.

Take this range of µ and let σ such that 1 > σ >
√

1− 1
π′(0) , where π′(0) is the

derivative of the Poincaré map of Γ0. Then it can be seen that the interval
JQ := [σε

2
3 ,
√

2ε
2
3 ], contains all the cuts, F+

µ , x
+
δ , of the Fenichel solution and the

intersection of Γµ, and also (Pe)′′ > 0 there, where Pe is the map derived form
the upper flow from x > 0 to x < 0.
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Now define τ >
√

1 + π′(0). Let Qε, the map derived from the regularized field
Zµ,ε from x < 0 to x > 0. It can be seen this map sends the interval

IQ := [−τε 2
3 ,Q−1

ε (σε
2
3 )] to JQ. Note that Pe(IQ) not has to be all inside JQ (

when there is not periodic orbit, for instance), but is always inside [−τ
√
δ, 0).

Besides, Q′′ε < 0 in JQ. Then the Poincaré map Pe ◦ Qε is convex, and the
bifurcation is a saddle-node.
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As an example, let’s take the family of vector fields Zµ = (X+
µ ,X

−
µ ) where X+ is

given by

ẋ = f (x , y , µ) = −y + µ+ 1 + x(r − 1)
ẏ = g(x , y , µ) = x + (y − µ− 1)(r − 1)

}
r =

√
x2 + (y − µ− 1)2 (16)

, and X− = (0, 1).
Then the Poincaré map Pe ◦ Qε defined in [−1, 0] and for ε = .05 and

µ1,2,3 = ε− (.5, .5623, .6)ε
4
3 has two, one and zero fixed points.
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Hysteresis

Let variables x ∈ Rn−1 and y ∈ R satisfy the differential equation

ẋ = f (x , y ; u)
ẏ = g(x , y ; u)

(17)

where f and g are smooth functions of x , y , u, and where u (the control) is given
by

u = sign(y) . (18)

The values of the vector field either side of the switch y = 0 can be written as

f ±(x , y) = f (x , y ;±1) and g±(x , y) = g(x , y ;±1) . (19)

We now introduce hysterises as another way of regularizing discontinuous systems.
In a ’negative’ boundary layer we define an overlap in the non smooth system:

u ∈

 +1 if y > −α ,
[−1,+1] if |y | ≤ α ,
−1 if y < +α

(20)

and define a hysteretic process: A trajectory with u = ∓1 switch to u = ±1 when
it reaches y = 0, and so on.
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We can illustrate the method with a simple example. Consider the planar
piecewise smooth system

ẋ = 0.3 + u3 ẏ = −0.5− u u = sign(y) . (21)

The hysteretic behaviour for the example for diminishing values of α. The line in
red is the limit solution on the switching y = 0.
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In [2] is proved that the hysteretic regularization and that of Sotomayor-Teixeira
tend to the same flow in the hyperbolic regions of the switching manifold.
But they can produce quite different behaviours when the hyperbolicity is loosed.
That’s the case of the regularization by hysteresis of the grazing sliding
bifurcation, where appears chaotic phenomena. The following picture is a model
of what happens when µ = α. (We suppose that all the tangencies at the lines
y = C are in x = 0)
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Now the key is the tangent orbit of the upper field in y = −α. Denoting by P̄ and
P its intersections on x > 0 y = α,and x < 0 y = α, respectively, and supposing
that the lower field is X− = (0, 1), a linear model of the discontinuities ( in fact,
are nonlinear as we will see) of the induced map on x < 0 onto itself will be

We see there’s is jump accumulation near x = 0, and there will be infinitely many
periodic orbits of all periods.
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Now let’s model the case µ < α

We see that for x ≥ P∞,the map is constantly 0. Now the the map is
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and the jumps accumulates at P∞. This is a chaotic behaviour but the iterates of
this type of maps tend to the map 0 almost everywhere.
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Consider an idealized model shown in the next picture

The model map T is in the first figure, while T 2 and T 7 are in the second and
third figure respectively. One can see the intricate dynamics, but also we see how
the µ({T−1(1)}) is increasing to 1.
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Finally the case µ > α. The curve in blue is the tangent of the upper field to
y = α. In the following picture we show the case that there is not another cut of
the curve tangent to y = −α between P2 and P̄1.
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If we perform the hysteretic regularization of the system (16) we have the
following pictures for trajectories and the Poincaré map.
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Smoothing the hysteresis

Of course, the hysteretic process we have defined is not smooth. In [2] we also
faced the problem of ”smoothing” the hysteresis. And this requires to embed the
system in a higher dimension, where the control u is also a time dependent
(fast)variable. Then the three dimensional system is:

ẋ = f (x , y ; u) ,
ẏ = g (x , y ; u) ,
εu̇ = ϕ

(
y+αu
ε

)
− u ,

(22)

By the definition of ϕ, we have

lim
ε→0

ϕ
(
y+αu
ε

)
∈ Φ(y + αu) . (23)

Then we had embed a (x , y) problem with a parameter u, in the higher
dimensional space (x , y , u), where u is now a fast variable that relaxes quickly to
u = ±1.
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Hysteretic relaxation of the example (7) for different values of α and his
projection in the (x , y) plane.
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Also we can embed the system (2) in a hysteretic relaxation. The picture shows
the behaviour of a trajectory near bifurcation and the projections onto the (x , y)
plane.
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The aging phenomena

We have seen already how a regularization can produce different behaviour near
the switching manifold. In [4] we are studying the regularization of an apparently
simple equation where emerges a phenomena we call ”aging phenomena”.
Consider the discontinuous damped periodically forced oscillator

ÿ + aẏ + y + f (t, ẏ) = 0, (24)

where a > 0, f (t, ẏ) = sin( 3π
2 t) for ẏ > 0 and f (t, ẏ) = sin(π2 t) for ẏ < 0.

Let the damping be small, say a = 0.01. Let λ = sign(ẏ). We perform two
regularizations :

linear
f (t, λ) = (1+λ)

2 sin( 3π
2 t) + (1−λ)

2 sin(π2 t)

nonlinear
f (t, λ) = sin( (1+λ)

2 ( 3π
2 t) + (1−λ)

2 (π2 t))

In spite that this equation is integrable in each half plane, is very difficult to study
it in the whole space. Nevertheless, for a=0, it can be proved that a periodic orbit
of period T = 8 exist. Then if we consider a = 0.01 and λ = ϕ( ẏ

ε ), this periodic
orbit persists in the linear regularization.
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So if we put the equation in system form, we have:

ṫ = 1
ẏ = z

ż = −az − y − (1+λ)
2 sin( 3π

2 t)− (1−λ)
2 sin(π2 t)

λ = ϕ(
z

ε
) (25)

The next picture shows the flow trapped by this orbit

Figure: ε = 0.05 and (0, 0, 10) as initial condition.
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But if with the same parameters we use the nonlinear regularization

ṫ = 1
ẏ = z

ż = −az − y − sin( (1+λ)
2 ( 3π

2 t) + (1−λ)
2 (π2 t))

λ = ϕ(
z

ε
) (26)

we obtain this picture, where we see the solution ”crawling”( sliding) in z = 0.
The solution has entered in the regularization zone, and then it take very long
time to scape from it. Moreover, the more large is the time when flow enters, the
more large time will be trapped. We say that system has aging.
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This phenomena is very clear in two dimensions. Let the system

ṫ = 1

ż = −az − sin( (1+λ)
2 ( 3π

2 t) + (1−λ)
2 (π2 t))

}
λ = ϕ(

z

ε
) (27)

that’s the version two dimensional of the nonlinear regularization. To transform to
a singularly perturbed system we perform the change z = v

ε :

ṫ = 1

εv̇ = −aεv − sin( (1+ϕ(v))
2 ( 3π

2 t) + (1−ϕ(v))
2 (π2 t))

}
(28)

The crucial fact is the shape of the critical manifold

sin(
(1 + ϕ(v))

2
(

3π

2
t) +

(1− ϕ(v))

2
(
π

2
t)) = 0 (29)
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In this picture we see how the solution is forced to slide on a stable leave of the
critical manifold, until enters in y < −ε ( or v =< −1 ). Then oscillates but can’t
not cross to y > ε ( v > 1). Finally the flow tends to a periodic orbit, but nothing
to do with the periodic orbit of the linear regularization.
Note, however, that in the three dimensional case, the flow has chances to come
back to z > ε, but once achieved this, the flow, for large times, is again trapped in
the sliding region, and will stay there for a time even larger that the precedent. Is
the aging phenomena

Figure: ε = 0.1 and (10.3, 1) as initial condition. The flow is scaled with v = z
ε
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