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[Chua, 1971]



Memory resistor [Chua, 1971]



Memristor constitutive relation

Definition ([Chua, 1971])

A memristor is a passive two-terminal electronic device,
characterized by a nonlinear constitutive relation between the flux φ

and the charge q.
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The first memristor





3D memristor



3D memristor



Two periodic attractors
α = 1,β = 0.1,γ = 1,a = 0.02,b = 2

Figure: Two periodic attractors, [Itoh and Chua, 2008]



4D PWL memristor



Chaotic attractor

Figure: Chaotic attractor, [Itoh and Chua, 2008]



[Messias et al., 2010] and
[Scarabello and Messias, 2014]



3D PWL memristor oscillator



Cubic memristor

q(z) = z3 + az2 + bz + c, a2−3b ≤ 0



Extreme multistability
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The tree-dimensional model

We consider a family of 3D systems, which is general enough to
capture all the mathematical models of memristor oscillators.

ẋ = a11W (z)x + a12y ,
ẏ = a21x + a22y ,
ż = x ,

(1)

where the constants a11,a12,a21,a22 ∈ R , the function W is defined
by

W (z) =
dq(z)

dz
, (2)

and q is a continuous function.

The equilibrium points of system (1) are given by

E = {(x ,y ,z) ∈ R3 : x = y = 0 and z ∈ R}. (3)
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Theorem

Consider system (1) where the function W is defined as in (2). For
any h ∈ R, the set

Sh = {(x ,y ,z) ∈ R3 :−a22x + a12y −a12a21z + a11a22q(z) = h} (4)

is an invariant manifold for the system. Therefore, the system has an
infinite family of invariant manifolds foliating the whole R3, and so the
dynamics is essentially two-dimensional.



Theorem

Consider system (1) with function W defined as in (2). If a12 6= 0, then
on each invariant set Sh given in (4), the dynamics is topologically
equivalent to the Liénard system

Ẋ = Y −F (X ), Ẏ =−g(X ) + h, (5)

where F and g are given by

F (X ) =−a11q(X )−a22X , g(X ) = a11a22q(X )−a12a21X . (6)

Moreover, (X (τ) ,Y (τ)) ∈ R2 is a solution of the Liénard system (5)
for a given h ∈ R, if and only if Eh (X (τ) ,Y (τ)) ∈ R3 is a solution of
system (1) on Sh, where

Eh (X (τ) ,Y (τ)) =

 Y (τ)−F (X(τ))
1

a12

[
(a2

22 + a12a21)Y (τ)−a22Y (τ) + h
]

X (τ)

 . (7)
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3D PWL Memristor Oscillator

Here

q(z) =

 b(z−1) + a, if z > 1,
az, if |z| ≤ 1,
b(z + 1)−a, if z <−1,

(8)

so that

W (z) =

{
b, if |z|> 1,
a, if |z| ≤ 1, with a 6= b. (9)

We define the auxiliary matrices

AE =

(
b ·a11 a12

a21 a22

)
, AC =

(
a ·a11 a12

a21 a22

)
, (10)

and the traces and determinants of such matrices
tE = ba11 + a22, tC = aa11 + a22,
dE = ba11a22−a12a21, dC = aa11a22−a12a21.

(11)



3D PWL Memristor Oscillator

From Theorem 2, we obtain the piecewise linear invariant manifolds
Sh defined by

Sh =

 a12y −a22x + dE z = h−a22 (tC − tE ) , if z > 1,
a12y −a22x + dCz = h, if |z| ≤ 1,
a12y −a22x + dE z = h−a22 (tE − tC) , if z <−1,

(12)



Theorem

Consider the function W defined as in (9). If a12 6= 0, then on each
invariant set Sh of system (1), the dynamics is topologically
equivalent to the continuous Liénard system

Ẋ = F (X )−Y , Ẏ = g(X )−h, (13)

where F and g are given by

F (X) =

 tE (X −1) + tC , if X > 1,
tCX , if |X | ≤ 1,
tE (X + 1)− tC , if X <−1,

(14)

g(X) =

 dE (X −1) + dC , if X > 1,
dCX , if |X | ≤ 1,
dE (X + 1)−dC , if X <−1,

(15)

and tE , tC ,dE ,dC are the traces and determinants (11) of the
matrices defined in (10).



Moreover, (X (τ) ,Y (τ)) ∈ R2 is a solution of the continuous reduced
system (13) for a given h ∈ R, if and only if Eh (X (τ) ,Y (τ)) ∈ R3 is a
solution of system (1) on Sh, where

Eh (X (τ) ,Y (τ)) =

 F (X (τ))−Y (τ)
1

a12

[
(a2

22 + a12a21)X (τ)−a22Y (τ) + h
]

X (τ)

 , (16)

and the function F is defined as in (14).



Theorem

Consider system (1)-(9) with a 6= b, and parameters such that

tE < 0, tC > 0, dE ,dC > 0, (17)

where tE , tC , dE and dC are the traces and determinants of matrices
defined in (10). Then for any |h|< dC the system has an infinite
number of stable periodic orbits, each one of them contained in the
set Sh defined in (12),
Moreover, such periodic orbits generate a tubular surface Ω which is
homeomorphic to the cylinder S1× (−1,1), and symmetric with
respect to the origin.
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Cubic Memristor Oscillator

Theorem
Consider system (1) with the functions q and W defined by

q(z) = cz3 + az2 + bz,

W (z) = q′(z) = 3cz2 + 2az + b.
(18)

If a12 6= 0, then on each invariant set Sh given by

Sh = {(x ,y ,z) ∈ R3 :−a22x + a12y + a11a22cz3+

+ aa11a22z2 + (ba11a22−a12a21)z = h}
(19)

the dynamics is topologically equivalent to the Liénard system

ẋ = y + ca11x3 + aa11x2 + (ba11 + a22)x ,

ẏ =−a11a22cx3−a11a22ax2 + (a12a21−a11a22b)x + h.
(20)



Cubic Memristor Oscillator

Theorem
Consider system (1) with the functions q and W defined by

q(z) = cz3 + az2 + bz,

W (z) = q′(z) = 3cz2 + 2az + b.
(18)

If a12 6= 0, then on each invariant set Sh given by

Sh = {(x ,y ,z) ∈ R3 :−a22x + a12y + a11a22cz3+

+ aa11a22z2 + (ba11a22−a12a21)z = h}
(19)

the dynamics is topologically equivalent to the Liénard system
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ẏ =−a11a22cx3−a11a22ax2 + (a12a21−a11a22b)x + h.
(20)





Moreover, if a11a22 < 0 then the system can be written into the form

ẋ = y ,

ẏ = µ1 + µ2x + cx3 + y(µ3 + 3ca11x2),
(21)

where the new parameters µ1,µ2 and µ3 are

µ1 =
27ch + a11a22a(9cb−2a2)−9caa12a21

27c2 (−a11a22)5/2 ,

µ2 =
a11a22(a2−3cb) + 3ca12a21

3c (a11a22)2 , µ3 =
a11(a2−3cb)−3ca22

3ca11a22
.







Melnikov theory for µ3 > 0



Application to a cubic memristor

Theorem

Consider the cubic memristor with (a2−3b + 3β )/(3β ) > 0
sufficiently small, and suppose that 0 < 3b−a2 < 3ξ/β .
Then there exists K < 0 with K < (−5/3)(a2−3b + 3β ) < 0, such that
the system has an infinite number of stable periodic orbits; in
particular, for any initial condition (x0,y0,z0) ∈ R3 with x0 6= 0 or y0 6= 0
and

min{A,B}<−βx0−ξy0 + ξz0−βq(z0) < max{A,B},
where

A =
1

27

(
a−

√
a2−3b + 3β

)(
6bβ −9ξ + 3β

2−a2
β + aβ

√
a2−3b + 3β

)
B =− 1

27

(
a +

√
a2−3b + 3β

)(
9ξ −6bβ −3β

2 + a2
β + aβ

√
a2−3b + 3β

)
,

the steady state solution is periodic. Moreover, the periodic orbits
generate a topological sphere Ω foliated by such periodic orbits.





Application to a 4D memristor oscillator











Theorem



Theorem



MFCC bifurcation



MFCC bifurcation
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Publications

On Discontinuous Piecewise Linear Models for Memristor
Oscillators, International Journal of Bifurcation and Chaos. DOI:
10.1142/s0218127417300221.
Unravelling the dynamical richness of 3D canonical memristor
oscillators, Microelectronic Engineering.
DOI:10.1016/j.mee.2017.08.004.
Bifurcation set of a Bogdanov-Takens system with symmetry.
Application to 3D cubic Memristor oscillators, Submitted .
A multiple focus-center-cycle bifurcation in 4D discontinuous
piecewise linear Memristor oscillators, Nonlinear Dynamics. DOI:
10.1007/s11071-018-4541-2.
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The authors consider a system with a relay based control and a linear
switching manifold defined by

ẋ =

{
Ax + b, if σ(x)≥ 0,
Ax−b, if σ(x) < 0,

where
A =

(
0 1
−a0 −a1

)
, b =

(
0

bk

)
,

and
σ(x) = eT

1 x + c eT
2 x−yc .



[Fossas and Granados, 2013]

ẋ = F(x) =

{
Ax + bL, if eT

1 x≤ 0,
Ax + bR , if eT

1 x > 0,
(22)

where matrix A and vectors b{L,R} are

A =

(
−ca0 a0c2−a1c + 1
−a0 ca0−a1

)
, bR =

(
bkc−ca0yc
bk −a0yc

)
, bL =

(
−bkc−ca0yc
−bk −a0yc

)
,

and e1 is the first canonical vector.



Stroboscopic map

For |A|= a0 6= 0, a fixed t > 0 and taking into account the solutions of
each vector field, the stroboscopic map is defined by

P (x; t) =

{
eAtx + (eAt − I)A−1bL, if eT

1 x≤ 0,
eAtx + (eAt − I)A−1bR , if eT

1 x > 0,
(23)

If bck 6= 0 the map is discontinuous, and always has two fixed points
given by

x∗{L,R} =−A−1b{L,R}
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Big Bang Bifurcation

Figure: t = 0.1, a0 =−2, a1 =−5, b =−1 and c = 1.5.

They conjectured that when the eigenvalues of the matrix eAt are real
and lower than 1, both fixed points are virtual and the sliding set is
attractive, then the stroboscopic map has a BB bifurcation point at
(yc ,k) = (0,0).



Big Bang Bifurcation

Figure: t = 0.1, a0 =−2, a1 =−5, b =−1 and c = 1.5.

They conjectured that when the eigenvalues of the matrix eAt are real
and lower than 1, both fixed points are virtual and the sliding set is
attractive, then the stroboscopic map has a BB bifurcation point at
(yc ,k) = (0,0).



Normalized canonical form [Freire et al., 2014]

Consider the planar piecewise linear system

ẋ =

{
A−x + b−, if eT

1 x≤ 0,
A+x + b+, if eT

1 x > 0,
(24)

where A± = (a±ij ) are constant matrices of order 2. If we consider the
modal parameter m{L,R} ∈ {0,1, i} defined in each zone by

m{L,R} =


i , if t2

∓−4d∓ < 0,
0, if t2

∓−4d∓ = 0,
1 if t2

∓−4d∓ > 0.

where i is the unit imaginary.



Normalized canonical form [Freire et al., 2014]

Then the system can be written into the normalized canonical form
defined by

ẋ =

{
ALx−bL, if eT

1 x≤ 0,
ARx−bR , if eT

1 x > 0,
(25)

where

Aj =

(
2γj −1

γ2
j −m2

j 0

)
, bR =

(
−b
aR

)
, bL =

(
0
aL

)
, j = {L,R} .

(26)
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The stroboscopic map when AL = AR

Given m ∈ {0,1, i} and a fixed value t > 0, the stroboscopic map P is
defined by

P (x; t) =

 PL (x; t) = eAtx− (Φ− I)A−1bL, if eT
1 x≤ 0,

PR (x; t) = eAtx− (Φ− I)A−1bR , if eT
1 x > 0,

where the matrix A is defined as in (26).





To alleviate notation, we define the auxiliary functions

Ck =

 cosh(kt), if m = 1,
cos(kt), if m = i ,

1, if m = 0,
, Sk =

 sinh(kt), if m = 1,
sin(kt), if m = i ,

kt , if m = 0.

and for k ≥ 1, and m ∈ {0,1, i} ,

µ
±
k := Ck ± γSk .



Theorem

Given m ∈ {0,1, i}, 0 < t < 1, γ ∈ R such that D = γ2−m2 > 0 and
γ < 0, consider the functions

h(1)
2 (γ) =

e4tγ −e3tγ µ
+
1 −e2tγ µ

−
2 + etγ µ

−
1

1 + e4tγ −2C2e2tγ ,

r (1)
2 (γ) =

e2tγ S2−
(
e3tγ + etγ)S1

1 + e4tγ −2C2e2tγ ,

and

b1(γ) =
h(1)

2 (γ)

r (1)
2 (γ)D

, b2(γ) =
2h(1)

2 (γ)−1
√

2r (1)
2 (γ)D

.

The following statements hold for map P.
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(a) For all b ∈ R with b1(γ) < b < b2(γ) there exists a unique
β ∈ (3π/4,π) defined by

β = arcsin

 −br (1)
2 (γ)D√

(1−h(1)
2 (γ))2 + (h(1)

2 (γ))2

−π−arctan

(
h(1)

2 (γ)

1−h(1)
2 (γ)

)
,

such that for all (aR ,aL) ∈ Ω2 map P has a unique stable
2-periodic orbit, where

Ω2 = {(aR ,aL) ∈ R2 : s2aR < aL < s1aR , s1aR < aL < s2aR},

with s1 = tan(β ) and s2 = 1/s1.

(b) For all b ∈ R with b ≤ b1(γ) map P has a unique stable 2-periodic
orbit for all aR ,aL ∈ R with aR ·aL < 0.
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Big Bang Bifurcation

Conjecture

Given m ∈ {0,1} and 0 < t < 1. Consider the two-parameter plane
(aR ,aL), and the functions

h(2)
3 (γ, t) =

e4tγ µ
+
2 −e3tγ µ

+
3 −etγ µ

−
1 + 1

e6tγ −2C3e3tγ + 1
,

r (2)
3 (γ, t) =

e4tγ S2−e3tγ S3 + etγ S1

e6tγ −2C3e3tγ + 1
.

Then for γ + m < 0 sufficiently small and

b = min
{

1
γ + m

, F (γ, t)
}
,

where F is defined by

F (γ, t) =
1

γ2−m2

2h(2)
3 (γ, t)−1
√

2r (2)
3 (γ, t)

,

the stroboscopic map P has at (0,0) a big bang bifurcation point of
codimension two.
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Figure: (a) m = 0,t = 0.9, γ =−0.2 and b = 1/γ. (c) m = 1, t = 0.9,
γ =−1.05 and b = F (γ, t)≈−9.27.
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Publications

On the Big Bang Bifurcation in the stroboscopic map for
discontinuous PWL systems. An application in Discretized
Sliding-mode Control Systems. In preparation.



¡¡¡ Thanks for your attention !!!
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