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Memristor constitutive relation

Definition ([Chua, 1971])

A memristor is a passive two-terminal electronic device,
characterized by a nonlinear constitutive relation between the flux ¢
and the charge q.
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The first memristor

The missing memristor found
DB Strukov, GS Snider, DR Stewart, RS Williams - nature, 2008 - nature.com

Y7 99 Cited by|6056 | Related arficles Al 38 versions

nature Vel 453]1 May 200E] doi 101038/ nature06932
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The missing memristor found

Dmitri B, Strukov', Gregory 5. Snider', Duncan R. Stewart’ & R. Stanley Williams'




Memristor oscillators
M Itoh, LO Chua - International Journal of Bifurcation and Chaos, 2008 - World Scientific

Yr 99 Cited b Related articles  All 9 versions
MEMRISTOR OSCILLATORS
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Two periodic attractors

a=1,=01,y=1,a=0.02,b=2

Figure: Two periodic attractors, [ltoh and Chua, 2008]



4D PWL memristor
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Chaotic attractor

Figure: Chaotic attractor, [ltoh and Chua, 2008]




[Messias et al., 2010] and

[Scarabello and Messias, 2014]

International Journal of Bifurcation and Chaos, Vol. 20, No. 2|{2010)[437-450

HOPF BIFURCATION FROM LINES OF
EQUILIBRIA WITHOUT PARAMETERS
IN MEMRISTOR OSCILLATORS

MARCELO MESSIAS®, CRISTIANE NESPOLI
and VANESSA A. BOTTA!

International Journal of Bifurcation and Chaos, Vol. 24, No. 1|(2014)| 1430001 (18 pages)

Bifurcations Leading to Nonlinear Oscillations
in a 3D Piecewise Linear Memristor Oscillator

Marluce da Cruz Scarabello® and Marcelo Messiast




3D PWL memristor oscillator




Cubic memristor

q(z)=22+az®+bz+c, &-3b<0




Extreme multistability

’

Go gle Scholar Extreme Nultistability memristor ﬂ

Articles Custom range... 2008 — 2018
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ma Two-memristor-based Chua's hyperchaotic circuit with plane equilibrium
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B Bao, T Jiang, G Wang, P Jin, H Bao, M Chen - Nonlinear Dynamics, 2017 - Springer
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The tree-dimensional model

We consider a family of 3D systems, which is general enough to
capture all the mathematical models of memristor oscillators.

):( = anW(z)x+ary,
Yy = axx+agy, (1)
z = X,
where the constants ai1, a2, a1, a0 € R, the function W is defined
by
dq(z)
W(z)= 2
(2)= =22 @)

and q is a continuous function.
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We consider a family of 3D systems, which is general enough to
capture all the mathematical models of memristor oscillators.

):( = anW(z)x+ary,
Yy = axx+agy, (1)
z = X,
where the constants ai1, a2, a1, a0 € R, the function W is defined
by
dq(z)
W(z)= 2
(2)= =22 @)

and q is a continuous function.
The equilibrium points of system (1) are given by

E={(x,y,z)eR3:x=y=0and zeR}. (3)




Theorem

Consider system (1) where the function W is defined as in (2). For
any h € R, the set

Sh={(x,y.2) €ER®: —amX + a1y — ap@iz+ai1a2q(z) = h} (4)

is an invariant manifold for the system. Therefore, the system has an
infinite family of invariant manifolds foliating the whole R3, and so the
dynamics is essentially two-dimensional.




Theorem

Consider system (1) with function W defined as in (2). If a;» # 0, then
on each invariant set Sy, given in (4), the dynamics is topologically
equivalent to the Liénard system

X=Y-F(X), Y=-g(X)+h, (5)
where F and g are given by

F(X)=—anq(X)—axnX, g(X)=aiiaxq(X)—appaqX. (6)




Theorem

Consider system (1) with function W defined as in (2). If a;» # 0, then
on each invariant set Sy, given in (4), the dynamics is topologically
equivalent to the Liénard system

X=Y-F(X), Y=-g(X)+h, (5)
where F and g are given by
F(X)=—anq(X)—axX, g(X)=aiaxnq(X)—-aanX. (6)

Moreover, (X (), Y (1)) € R? is a solution of the Liénard system (5)
for a given h € R, if and only if E(X (1), Y (7)) € R® is a solution of
system (1) on S, where

Y(7) - F(X(7))

Ep(X(2),Y (7)) = (312 [(a%2+a12a21)Y(f)azzY(f)+h}) . @)
X(7)




3D PWL Memristor Oscillator

Here
b(z—1)+a, if z>1,
q(z) =1 az, it [z <1, (8)
b(z+1)—a, if z<-1,
so that b i
, zl > 1, ,
W(z) _{ a if |z]<1, with a#b. 9)
We define the auxiliary matrices
_ ([ b-aiy a2 _ [ a-an asz
Ae = ( ap1 an >’ Ac = ( ap1 ag )7 (10)
and the traces and determinants of such matrices
te = bay1 + an, lc = aay + a2, (11)

de = baj1a — @12821, dc = aayiage —aedes-




3D PWL Memristor Oscillator

From Theorem 2, we obtain the piecewise linear invariant manifolds
Sy, defined by

apy —amX+dez=h—axn(tc—tg), |if z>1,
Shp= aipy —amXx+dgz=nh, if |Z| <1, (12)
apy—apX+dez=h-ax(fe—-tc), if z<-1,




Consider the function W defined as in (9). If a12 # 0, then on each
invariant set Sy, of system (1), the dynamics is topologically
equivalent to the continuous Liénard system

X=FX)-Y, Y=gX)—h, (13)

where F and g are given by

te(X—1)+tg, if
F(X)={ tcX, if

te(X+1)—tg, if

g(X)=1{ deX, if

de(X—1)+dg, if
de(X+1)—dg, if

X>1,
[X| <1, (14)
X< -1,

X>1,
[X| <1, (19)
X< -1,

and tg, tc,de,dc are the traces and determinants (11) of the

matrices defined in (10).




Moreover, (X (1), Y (1)) € R? is a solution of the continuous reduced
system (13) for a given h € R, if and only if Ex(X (1), Y (7)) €R3is a
solution of system (1) on Sy, where

F(X(7))-Y(7) )

Eh(X(T), Y(‘L’)) = (;2 [(aSZ + a12a21 )X(’L') —an Y(T)-i—h}
X(7)

(16)

and the function F is defined as in (14).




Theorem

Consider system (1)-(9) with a+# b, and parameters such that
te <O, tc>0, dE,dc>0, (17)

where tg, tc, de and dq are the traces and determinants of matrices
defined in (10). Then for any |h| < d¢ the system has an infinite
number of stable periodic orbits, each one of them contained in the
set Sy, defined in (12),

Moreover, such periodic orbits generate a tubular surface Q2 which is
homeomorphic to the cylinder 8! x (—1,1), and symmetric with
respect to the origin.
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Cubic Memristor Oscillator

Consider system (1) with the functions g and W defined by

q(z) = cz® + az? + bz,

(18)
W(z) = ¢'(z) = 3cz® +2az +b.




Cubic Memristor Oscillator

Consider system (1) with the functions g and W defined by

q(z) = cz® + az? + bz,
W(z) = q'(z) = 3cz® +2az + b.

If a1» # 0, then on each invariant set Sy, given by

Sp={(x,y,2) € R®: —appX + aioy + a1 a202°+

. (19)
+aayy appz” + (bay ap2 — a12821)z = h}
the dynamics is topologically equivalent to the Liénard system
- 3 2
= + (bay + az) X,
X =y+cai1x’ +aaj x* + (bay + a») (20)

: 3 2
Y = —a118p20X" — a118p2ax° + (812821 — @11822b)X + h.




¥



Moreover, if aj1a22 < 0 then the system can be written into the form

X=y,

. (21)
¥ = 1 + X + ¢x° + y(ug + 3can x°),

where the new parameters 4, o and s are
_ 27ch+ ayappa(9chb —2a%) — 9caanayy
27¢2 (~ay1a)”? 7
_ a11a22(a2—30b)+30a12321 g = a11(32—30b) —3cann
3c(arran)? 1 3caitaz ’

M




0.3

0.6

0.6

§ =i + por + 27+ y(ps — 327).




| @an = {(p1, pz, pi3) = 27pf + 4p3 = 0 and ps € R}, |

|;u ={(p,p2pa) i pn = F (%)aﬂ F (%)Uzm. B2 < —ps}, |




Melnikov theory for

= {2 m) € R : iy = paval ), jip = 2415 (6), 0 <6 < o0},

_ —10(cosh 26 + 5)(9sinh 6 + sinh 38 — 126 cosh )
~ 3(370sinh 0 + 115 sinh 3¢ + sinh 50 — 600(11 cosh @ + cosh 34))

2 (8)

v (8) = —(1a (#) s+ 5%),

DHT = (0,




Application to a cubic memristor

Theorem

Consider the cubic memristor with (&> —3b+38)/(38) >0
sufficiently small, and suppose that0 < 3b— & < 3&/B.

Then there exists K < 0 with K < (—5/3)(a? —3b+3p) < 0, such that
the system has an infinite number of stable periodic orbits; in
particular, for any initial condition (xo, yo,2) € R® with xo # 0 or yg # 0
and

min{A, B} < —Bxo —&yo+E20 — Bq(20) < max{A, B},

where

A= % <a—a/a2—3b+3/3> (Gbﬁ—9§+3ﬁ2—azﬁ+aﬁ\/a2—3b+3ﬁ)
B=-2l7 (a+,/a2—3b+3ﬁ) (95—Sbﬁ—3ﬁ2+a2ﬁ+aﬁ,/a2—3b+3ﬁ),

the steady state solution is periodic. Moreover, the periodic orbits
generate a topological sphere 2 foliated by such periodic orbits.
Ddays
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5.

I = Y,
Y2 = Y3 — Y4.
Uz = —Bys + YYya,

g =Yz — H’,(yl)yc}:




Hyr,ya, v, 4a) = 5 (ya +q(yn)) — 7 (01 + y2) + v,

0= Us, Sy = {(y1,y2, v3.94) € R : H{y1, 52,93, ys) = h}.
U2 = Y3 — Yu,
Uz = —Pyz + Vs, By = 1} (x1 + x9) — qlay) — %1’3 + ik
b=t~ Wiwse by D (ot ) b ) 4
.'3 e'jl g’
g = — s + 3.
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tg —1 0 to—tp h 1
X=|my 0 —1])x+|me—mg|sat [e'l‘rx) +=17
dE 0 0 (EC —(F.E ! ;3

heRand B£0, (x1(7),22(7), z3(7)) € R3

78 = 28721 (7) + (B = 1)2a(r) + a(7)

(1)
y(:r)(( (42 = B = Vs (r) — 1a(r) + 73(r) )
yx1(7) — x2(7) — glz1 (7)) + R/




Take me > 0, ¢ = mete — de, and assume the

non-degeneracy condition

p=deme —domg +dgme — T.’I%TE 2 0.

Then, for £ = 0 the 4D system undergoes a focus-center-
limit cycle bifurcation simultaneously on all the levels
Sy with |h] < |de| # 0.

Thus. from the lineal center configurations in the central
zone, which exist for ¢ = 0, an infinite number of stable
periodic orbits simultancously appears for ep > 0 and «
sufficiently small.




Take me > 0, ¢ = mete — de, and assume the

non-degeneracy condition

p=deme —domg +dgme — T.’I%TE 2 0.

Then, for £ = 0 the 4D system undergoes a focus-center-
limit cycle bifurcation simultaneously on all the levels
Sy with || < |de| # 0.

In particular, if p > 0 and de < 0. then the periodic or-
bits bifurcates for ¢ > 0 and are orbitally asymptotically
stable. Otherwise, the bifurcating periodic orbits are
unstable.




MFCC bifurcation

IfOo< <l v<+/B(14+75) and 0 < b < a then for a = ay(7) the system
undergoes a MFCC b:ﬁmmtwn g0 that when a < ay(v) all the equilibria in
central segment are stable, becoming unstable for a > a (7).
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MFCC bifurcation

Fora—a,(v) > 0 and sufficiently small, there appears a bounded
hypersurface @ c R* foliated by stable periodic orbits.

V/B(1+5)

a(7)
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Publications

@ On Discontinuous Piecewise Linear Models for Memristor
Oscillators, International Journal of Bifurcation and Chaos. DOI:
10.1142/s0218127417300221.

@ Unravelling the dynamical richness of 3D canonical memristor
oscillators, Microelectronic Engineering.
DOI:10.1016/j.mee.2017.08.004.

@ Bifurcation set of a Bogdanov-Takens system with symmetry.
Application to 3D cubic Memristor oscillators, Submitted .

@ A multiple focus-center-cycle bifurcation in 4D discontinuous

piecewise linear Memristor oscillators, Nonlinear Dynamics. DOI:
10.1007/s11071-018-4541-2.
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Differ Equ Dyn Syst (Jan&Apr 2013) 21(1&2):35-43
DOI 10.1007/s12591-012-0121-y

ORIGINAL RESEARCH

Occurrence of Big Bang Bifurcations in Discretized
Sliding-mode Control Systems

Enric Fossas - Albert Granados

The authors consider a system with a relay based control and a linear
switching manifold defined by

Ax—b, if o(x)<0,

0 1 0
A= (*ao *31)’ b= (bk)’

o(x) =e{x+celx—y..

).(:{ Ax+b, if o(x)>0,

where

and




[Fossas and Granados, 2013]

. [ Ax+b, if elx<o,
X_F(x)_{ Ax+bg, if elx>0, 22)

where matrix A and vectors by, g, are

A— [—ca apc®—ajc+1 by — bkc — capy. b, — —bkec — cagyc
“\—a cap — a "PRT\ bk—agye ) LT\ —bk—agy: )

and ey is the first canonical vector.




Stroboscopic map

For |A| = ay # 0, a fixed t > 0 and taking into account the solutions of
each vector field, the stroboscopic map is defined by

eMx+(ef—-NAb,, if elx<o,

g (’“”‘{ xt (MDA be, if elx>0, 0




Stroboscopic map

For |A| = ay # 0, a fixed t > 0 and taking into account the solutions of
each vector field, the stroboscopic map is defined by

N eAfx+(eAt_/)A_1bL’ if e1Tx§07
Poct)={ uxtlon ane it efx>0, &

If beck # 0 the map is discontinuous, and always has two fixed points
given by 1
X?L,R} =-A" b{L,R}




Big Bang Bifurcation




Big Bang Bifurcation

Figure: t=0.1,8p=-2,ay =-5,b=—-1and c=1.5.
They conjectured that when the eigenvalues of the matrix e*! are real
and lower than 1, both fixed points are virtual and the sliding set is

attractive, then the stroboscopic map has a BB bifurcation point at
(yC7k) = (070)




Normalized canonical form [Freire et al., 2014]

Consider the planar piecewise linear system

i oT
).(:{ A_x+b_, if e/x<0, (24)

A x+b,, if elx>0,

where Ay = (ajF) are constant matrices of order 2. If we consider the
modal parameter my; gy € {0,1,/} defined in each zone by

i, if t% —4d. <0,
my gy = 0, if % —4d:,: =0,
1 if 2—4d:>0.

where i is the unit imaginary.




Normalized canonical form [Freire et al., 2014]

Then the system can be written into the normalized canonical form
defined by

— i T
X = { A x—b,, if e;x<0, (25)

Apx—bg, if elx>0,
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The stroboscopic map when

Given m e {0,1,i} and a fixed value t > 0, the stroboscopic map P is
defined by

PL(x;t) = eMx— (¢ - NA"Tb,, if elx<0,
P(x;t)=
Pr(x;t) = eAx— (¢ —)A""bp, if elx>0,

where the matrix A is defined as in (26).







To alleviate notation, we define the auxiliary functions

cosh(kt), if m
Cx = cos(kt), if m
1, if m

i sin(kt), if m=i,
07 kt, |f m= 0

1, sinh(kt), if m=1,
i ) Sk:

and for k >1,and me {0,1,i},

uki = Ck + )/Sk




Theorem

Givenme {0,1,i},0<t<1,ycR suchthat D=y>—m? >0 and
v < 0, consider the functions

(1) )= ET=E TR ey e
2 14 e4r —2C, el '
1) . 62“/82 = (e3’7+ e”’) Sy

O A e T T

and

n () (7)

(1) b y
' (1D frg (Y)D
The following statements hold for map P.

bi(y) =
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v %
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5 3
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5 5 e
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g I ©
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=
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(a) For all b e R with bi(y) < b < ba(7) there exists a unique
B € (3n/4,r) defined by

(1) (1)
= arcsin —brp (7) D — m—arctan (/12(1()y)> ,
V=1 )2+ (K ()2 1-h (1)

such that for all (ag, aL) € Qo map P has a unique stable
2-periodic orbit, where

2.
Q> ={(ap,a) ER°:spag < a, < S18r, S18r<aL < S2ar},

with sy =tan(f) and s, = 1/s;.




(a) For all b e R with bi(y) < b < ba(7) there exists a unique
B € (3n/4,r) defined by

(1) (1)
= arcsin —brp (7) D — m—arctan (/12(1()y)> ,
V=1 )2+ (K ()2 1-h (1)

such that for all (ag, aL) € Qo map P has a unique stable
2-periodic orbit, where

2.
Q> ={(ap,a) ER°:spag < a, < S18r, S18r<aL < S2ar},

with sy =tan(f) and s, = 1/s;.
(b) For all b e R with b < by(y) map P has a unique stable 2-periodic
orbit for all ag,a; € R with ag-a; <0.




Big Bang Bifurcation

Given me {0,1} and 0 < t < 1. Consider the two-parameter plane
(ap,aL), and the functions

My + _ GBtryt ety
ey —eTuy —euy +1

(2) _
(M) = et a1
r(2) (Y t) _ e4TY82 - 331783 + et781

3 )=

66t7—203e3t7+ 1




Big Bang Bifurcation

Given me {0,1} and 0 < t < 1. Consider the two-parameter plane
(ap,aL), and the functions

My + _ GBtryt ety
ey —eTuy —euy +1

(2) _
hg™ (r.1) = e8tY —2C;5e3tr + 1 ’
I'(Z) (1,1) = e4tY82 = 831783 + 61781

3 AV

66t7—263e3t7+1
Then for y+ m < 0 sufficiently small and

. 1
b=min {m’ F(y, t)} ,
where F is defined by
1 2nP (-
PP \@r:,(,z)(%t) ’

the stroboscopic map P has at (0,0) a big bang bifurcation point of
codimension two.

F(y.t)




RN
e
oy
s

3m/4 T

Figure: (@) m=0,t=0.9,y=-02andb=1/y. (c)m=1,t=0.9,
y=-1.05and b= F(y,t) ~ —9.27.
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Publications

@ On the Big Bang Bifurcation in the stroboscopic map for
discontinuous PWL systems. An application in Discretized
Sliding-mode Control Systems. In preparation.




iii Thanks for your attention !!!
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