Some contributions to the analysis of piecewise linear systems PhD thesis

PhD candidate:
Andrés Felipe Amador Rodríguez

Advisors:
Enrique Ponce and Javier Ros
Ddays Murcia, October 3-5, 2018.

Outline

(1) Memristor oscillators

- Motivation

Outline

(1) Memristor oscillators

- Motivation
- Main contributions

Outline

(1) Memristor oscillators

- Motivation
- Main contributions
- Application to discontinuous 3D PWL models

Outline

(1) Memristor oscillators

- Motivation
- Main contributions
- Application to discontinuous 3D PWL models
- Cubic Memristor Oscillator

Outline

(1) Memristor oscillators

- Motivation
- Main contributions
- Application to discontinuous 3D PWL models
- Cubic Memristor Oscillator
- Application to a 4D memristor oscillator

Outline

(1) Memristor oscillators

- Motivation
- Main contributions
- Application to discontinuous 3D PWL models
- Cubic Memristor Oscillator
- Application to a 4D memristor oscillator
- Publications
(2) Big Bang Bifurcation

Ddays

Outline

(1) Memristor oscillators

- Motivation
- Main contributions
- Application to discontinuous 3D PWL models
- Cubic Memristor Oscillator
- Application to a 4D memristor oscillator
- Publications
(2) Big Bang Bifurcation
- Motivation

Outline

(1) Memristor oscillators

- Motivation
- Main contributions
- Application to discontinuous 3D PWL models
- Cubic Memristor Oscillator
- Application to a 4D memristor oscillator
- Publications
(2) Big Bang Bifurcation
- Motivation
- Main contributions

Outline

(1) Memristor oscillators

- Motivation
- Main contributions
- Application to discontinuous 3D PWL models
- Cubic Memristor Oscillator
- Application to a 4D memristor oscillator
- Publications
(2) Big Bang Bifurcation
- Motivation
- Main contributions
- Publications
(3) References

Outline

(1) Memristor oscillators

- Motivation
- Main contributions
- Application to discontinuous 3D PWL models
- Cubic Memristor Oscillator
- Application to a 4D memristor oscillator
- Publications

2 Big Bang Bifurcation

- Motivation
- Main contrilbutions
- Publications
(3) References

Fundamental elements

Memory resistor

Memristor constitutive relation

Definition ([Chua, 1971])

A memristor is a passive two-terminal electronic device, characterized by a nonlinear constitutive relation between the flux ϕ and the charge q.

Memristor constitutive relation

Definition ([Chua, 1971])

A memristor is a passive two-terminal electronic device, characterized by a nonlinear constitutive relation between the flux ϕ and the charge q.

The first memristor

The missing memristor found
DB Strukov, GS Snider, DR Stewart, RS Williams - nature, 2008 - nature com
© 50 Cited by 6056 Related articles All 38 versions
nature

LETTERS

The missing memristor found
Dmitri B. Strukov ${ }^{1}$, Gregory S. Snider ${ }^{1}$, Duncan R. Stewart ${ }^{1}$ \& R. Stanley Williams ${ }^{1}$

Memristor oscillators

M Itoh, LO Chua - International Journal of Bifurcation and Chaos, 2008 - World Scientific

MEMRISTOR OSCILLATORS

MAKOTO ITOH
Department of Information and Communication Engineering,
Fukuoka Institute of Technology,
Fukuoka 811-0295, Japan
LEON O. CHUA
Department of Electrical Engineering and Computer Sciences,
University of California, Berkeley,
Berkeley, CA 94720, USA

3D memristor

3D memristor

$$
\begin{array}{ll}
\begin{array}{ll}
\frac{d x}{d \tau}=\alpha(y-W(z) x), \\
\frac{d y}{d \tau} & =-\xi x+\beta y, \\
\frac{d z}{d \tau} & =x,
\end{array} \\
\begin{array}{ll}
\alpha=\frac{1}{C}, \quad \xi=\frac{1}{L}, \quad \beta=\frac{R}{L},
\end{array} & W(z)=\left\{\begin{array}{lll}
b, & \text { if } & |z|>1, \\
a, & \text { if } & |z| \leq 1,
\end{array}\right. \\
\hline
\end{array}
$$

Two periodic attractors

$$
\alpha=1, \beta=0.1, \gamma=1, a=0.02, b=2
$$

Figure: Two periodic attractors, [Itoh and Chua, 2008]

4D PWL memristor

Chaotic attractor

Figure: Chaotic attractor, [Itoh and Chua, 2008]

[Messias et al., 2010] and [Scarabello and Messias, 2014]

International Journal of Bifurcation and Chaos, Vol. 20, No. 2 (2010) 437-450
HOPF BIFURCATION FROM LINES OF EQUILIBRIA WITHOUT PARAMETERS

IN MEMRISTOR OSCILLATORS
MARCELO MESSIAS* ${ }^{*}$, CRISTIANE NESPOLI ${ }^{\dagger}$ and VANESSA A. BOTTA ${ }^{\ddagger}$

International Journal of Bifurcation and Chaos, Vol. 24, No. 1 (2014) 1430001 (18 pages)
Bifurcations Leading to Nonlinear Oscillations in a 3D Piecewise Linear Memristor Oscillator

Marluce da Cruz Scarabello* and Marcelo Messias ${ }^{\dagger}$

3D PWL memristor oscillator

Cubic memristor

$$
q(z)=z^{3}+a z^{2}+b z+c, \quad a^{2}-3 b \leq 0
$$

Extreme multistability

\equiv Google Scholar

Extreme Multistability memristor

Articles

About 586 results

Custom range.
$2008-2018$
Extreme multistability in a memristive circuit
BC Bao, Q Xu, H Bao, M Chen - Electronics Letters, 2016 - IET
is 20 Cited by 66 Related articles All 3 versions

Hidden extreme multistability in memristive hyperchaotic system
BC Bao, H Bao, N Wang, M Chen, Q Xu - Chaos, Solitons \& Fractals, 2017 - Elsevier
If 5.2 Cited by 79 Related articles All 4 versions
[hтmL] Two-memristor-based Chua's hyperchaotic circuit with plane equilibrium and its extreme multistability
B Bao, T Jiang, G Wang, P Jin, H Bao, M Chen - Nonlinear Dynamics, 2017 - Springer
I. 50 Cited by 48 Related articles

Multiple attractors in a non-ideal active voltage-controlled memristor based
Chua's circuit
Q Xu, Y Lin, B Bao, M Chen - Chaos, Solitons \& Fractals, 2016 - Elsevier
A. 25 Cited by 73 Related articles All 5 versions

Outline

(1) Memristor oscillators

- Motivation
- Main contributions
- Application to discontinuous 3D PWL models
- Cubic Memristor Oscillator
- Application to a 4D memristor oscillator
- Publications

2 Big Bang Bifurcation

- Motivation
- Main contributions
- Publications
(3) References

The tree-dimensional model

We consider a family of 3D systems, which is general enough to capture all the mathematical models of memristor oscillators.

$$
\begin{align*}
& \dot{x}=a_{11} W(z) x+a_{12} y, \\
& \dot{y}=a_{21} x+a_{22} y, \tag{1}\\
& \dot{z}=x,
\end{align*}
$$

where the constants $a_{11}, a_{12}, a_{21}, a_{22} \in \mathbb{R}$, the function W is defined by

$$
\begin{equation*}
W(z)=\frac{d q(z)}{d z} \tag{2}
\end{equation*}
$$

and q is a continuous function.

The tree-dimensional model

We consider a family of 3D systems, which is general enough to capture all the mathematical models of memristor oscillators.

$$
\begin{align*}
\dot{x} & =a_{11} W(z) x+a_{12} y, \\
\dot{y} & =a_{21} x+a_{22} y, \tag{1}\\
\dot{z} & =x,
\end{align*}
$$

where the constants $a_{11}, a_{12}, a_{21}, a_{22} \in \mathbb{R}$, the function W is defined by

$$
\begin{equation*}
W(z)=\frac{d q(z)}{d z} \tag{2}
\end{equation*}
$$

and q is a continuous function.
The equilibrium points of system (1) are given by

$$
\begin{equation*}
E=\left\{(x, y, z) \in \mathbb{R}^{3}: x=y=0 \text { and } z \in \mathbb{R}\right\} . \tag{3}
\end{equation*}
$$

Theorem

Consider system (1) where the function W is defined as in (2). For any $h \in \mathbb{R}$, the set

$$
\begin{equation*}
S_{h}=\left\{(x, y, z) \in \mathbb{R}^{3}:-a_{22} x+a_{12} y-a_{12} a_{21} z+a_{11} a_{22} q(z)=h\right\} \tag{4}
\end{equation*}
$$

is an invariant manifold for the system. Therefore, the system has an infinite family of invariant manifolds foliating the whole \mathbb{R}^{3}, and so the dynamics is essentially two-dimensional.

Theorem

Consider system (1) with function W defined as in (2). If $a_{12} \neq 0$, then on each invariant set S_{h} given in (4), the dynamics is topologically equivalent to the Liénard system

$$
\begin{equation*}
\dot{X}=Y-F(X), \quad \dot{Y}=-g(X)+h \tag{5}
\end{equation*}
$$

where F and g are given by

$$
\begin{equation*}
F(X)=-a_{11} q(X)-a_{22} X, \quad g(X)=a_{11} a_{22} q(X)-a_{12} a_{21} X . \tag{6}
\end{equation*}
$$

Theorem

Consider system (1) with function W defined as in (2). If $a_{12} \neq 0$, then on each invariant set S_{h} given in (4), the dynamics is topologically equivalent to the Liénard system

$$
\begin{equation*}
\dot{X}=Y-F(X), \quad \dot{Y}=-g(X)+h \tag{5}
\end{equation*}
$$

where F and g are given by

$$
\begin{equation*}
F(X)=-a_{11} q(X)-a_{22} X, \quad g(X)=a_{11} a_{22} q(X)-a_{12} a_{21} X . \tag{6}
\end{equation*}
$$

Moreover, $(X(\tau), Y(\tau)) \in \mathbb{R}^{2}$ is a solution of the Liénard system (5) for a given $h \in \mathbb{R}$, if and only if $E_{h}(X(\tau), Y(\tau)) \in \mathbb{R}^{3}$ is a solution of system (1) on S_{h}, where

$$
E_{h}(X(\tau), Y(\tau))=\left(\begin{array}{c}
Y(\tau)-F(X(\tau)) \tag{7}\\
\frac{1}{a_{12}}\left[\left(a_{22}^{2}+a_{12} a_{21}\right) Y(\tau)-a_{22} Y(\tau)+h\right] \\
X(\tau)
\end{array}\right) .
$$

3D PWL Memristor Oscillator

Here

$$
q(z)=\left\{\begin{array}{llc}
b(z-1)+a, & \text { if } & z>1, \tag{8}\\
a z, & \text { if } & |z| \leq 1, \\
b(z+1)-a, & \text { if } & z<-1,
\end{array}\right.
$$

so that

$$
W(z)=\left\{\begin{array}{lll}
b, & \text { if } & |z|>1, \tag{9}\\
a, & \text { if } & |z| \leq 1,
\end{array} \text { with } a \neq b .\right.
$$

We define the auxiliary matrices

$$
A_{E}=\left(\begin{array}{cc}
b \cdot a_{11} & a_{12} \tag{10}\\
a_{21} & a_{22}
\end{array}\right), \quad A_{C}=\left(\begin{array}{cc}
a \cdot a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right)
$$

and the traces and determinants of such matrices

$$
\begin{array}{ll}
t_{E}=b a_{11}+a_{22}, & t_{C}=a a_{11}+a_{22} \\
d_{E}=b a_{11} a_{22}-a_{12} a_{21}, & d_{C}=a a_{11} a_{22}-a_{12} a_{21} \tag{11}
\end{array}
$$

3D PWL Memristor Oscillator

From Theorem 2, we obtain the piecewise linear invariant manifolds S_{h} defined by

$$
S_{h}=\left\{\begin{array}{llc}
a_{12} y-a_{22} x+d_{E} z=h-a_{22}\left(t_{C}-t_{E}\right), & \text { if } & z>1, \tag{12}\\
a_{12} y-a_{22} x+d_{C} z=h, & \text { if } & |z| \leq 1, \\
a_{12} y-a_{22} x+d_{E} z=h-a_{22}\left(t_{E}-t_{C}\right), & \text { if } & z<-1,
\end{array}\right.
$$

Theorem

Consider the function W defined as in (9). If $a_{12} \neq 0$, then on each invariant set S_{h} of system (1), the dynamics is topologically equivalent to the continuous Liénard system

$$
\begin{equation*}
\dot{X}=F(X)-Y, \quad \dot{Y}=g(X)-h \tag{13}
\end{equation*}
$$

where F and g are given by

$$
\begin{align*}
& F(X)=\left\{\begin{array}{lll}
t_{E}(X-1)+t_{C}, & \text { if } & X>1, \\
t_{C} X, & \text { if } & |X| \leq 1, \\
t_{E}(X+1)-t_{C}, & \text { if } & X<-1,
\end{array}\right. \tag{14}\\
& g(X)=\left\{\begin{array}{lll}
d_{E}(X-1)+d_{C}, & \text { if } & X>1, \\
d_{C} X, & \text { if } & |X| \leq 1, \\
d_{E}(X+1)-d_{C}, & \text { if } & X<-1,
\end{array}\right. \tag{15}
\end{align*}
$$

and $t_{E}, t_{C}, d_{E}, d_{C}$ are the traces and determinants (11) of the matrices defined in (10).

Moreover, $(X(\tau), Y(\tau)) \in \mathbb{R}^{2}$ is a solution of the continuous reduced system (13) for a given $h \in \mathbb{R}$, if and only if $E_{h}(X(\tau), Y(\tau)) \in \mathbb{R}^{3}$ is a solution of system (1) on S_{h}, where

$$
E_{h}(X(\tau), Y(\tau))=\left(\begin{array}{c}
F(X(\tau))-Y(\tau) \tag{16}\\
\frac{1}{a_{12}}\left[\left(a_{22}^{2}+a_{12} a_{21}\right) X(\tau)-a_{22} Y(\tau)+h\right] \\
X(\tau)
\end{array}\right)
$$

and the function F is defined as in (14).

Theorem

Consider system (1)-(9) with $a \neq b$, and parameters such that

$$
\begin{equation*}
t_{E}<0, \quad t_{C}>0, \quad d_{E}, d_{C}>0, \tag{17}
\end{equation*}
$$

where t_{E}, t_{C}, d_{E} and d_{C} are the traces and determinants of matrices defined in (10). Then for any $|h|<d_{C}$ the system has an infinite number of stable periodic orbits, each one of them contained in the set S_{h} defined in (12),
Moreover, such periodic orbits generate a tubular surface Ω which is homeomorphic to the cylinder $\mathbf{S}^{\mathbf{1}} \times(-1,1)$, and symmetric with respect to the origin.

Cubic Memristor Oscillator

Theorem

Consider system (1) with the functions q and W defined by

$$
\begin{align*}
q(z) & =c z^{3}+a z^{2}+b z \\
W(z) & =q^{\prime}(z)=3 c z^{2}+2 a z+b . \tag{18}
\end{align*}
$$

Cubic Memristor Oscillator

Theorem

Consider system (1) with the functions q and W defined by

$$
\begin{align*}
q(z) & =c z^{3}+a z^{2}+b z \tag{18}\\
W(z) & =q^{\prime}(z)=3 c z^{2}+2 a z+b .
\end{align*}
$$

If $a_{12} \neq 0$, then on each invariant set S_{h} given by

$$
\begin{align*}
S_{h} & =\left\{(x, y, z) \in \mathbb{R}^{3}:-a_{22} x+a_{12} y+a_{11} a_{22} c z^{3}+\right. \\
& \left.+a a_{11} a_{22} z^{2}+\left(b a_{11} a_{22}-a_{12} a_{21}\right) z=h\right\} \tag{19}
\end{align*}
$$

the dynamics is topologically equivalent to the Liénard system

$$
\begin{align*}
& \dot{x}=y+c a_{11} x^{3}+a a_{11} x^{2}+\left(b a_{11}+a_{22}\right) x \\
& \dot{y}=-a_{11} a_{22} c x^{3}-a_{11} a_{22} a x^{2}+\left(a_{12} a_{21}-a_{11} a_{22} b\right) x+h \tag{20}
\end{align*}
$$

Moreover, if $a_{11} a_{22}<0$ then the system can be written into the form

$$
\begin{align*}
& \dot{x}=y \\
& \dot{y}=\mu_{1}+\mu_{2} x+c x^{3}+y\left(\mu_{3}+3 c a_{11} x^{2}\right), \tag{21}
\end{align*}
$$

where the new parameters μ_{1}, μ_{2} and μ_{3} are

$$
\begin{aligned}
& \mu_{1}=\frac{27 c h+a_{11} a_{22} a\left(9 c b-2 a^{2}\right)-9 c a a_{12} a_{21}}{27 c^{2}\left(-a_{11} a_{22}\right)^{5 / 2}}, \\
& \mu_{2}=\frac{a_{11} a_{22}\left(a^{2}-3 c b\right)+3 c a_{12} a_{21}}{3 c\left(a_{11} a_{22}\right)^{2}}, \quad \mu_{3}=\frac{a_{11}\left(a^{2}-3 c b\right)-3 c a_{22}}{3 c a_{11} a_{22}} .
\end{aligned}
$$

Melnikov theory for $\mu_{3}>0$

$$
\begin{aligned}
& \varphi_{h}=\left\{\left(\mu_{2}, \mu_{1}\right) \in \mathbb{R}^{2}: \mu_{1}=\mu_{3} \nu_{2}(\theta), \quad \mu_{2}= \pm \mu_{3}^{3 / 2} \nu_{1}(\theta), \quad 0<\theta<\infty\right\}, \\
& \nu_{2}(\theta)=\frac{-10(\cosh 2 \theta+5)(9 \sinh \theta+\sinh 3 \theta-12 \theta \cosh \theta)}{3(370 \sinh \theta+115 \sinh 3 \theta+\sinh 5 \theta-60 \theta(11 \cosh \theta+\cosh 3 \theta))}, \\
& \nu_{1}(\theta)=-\left(\nu_{2}(\theta) s+s^{3}\right), \quad s^{2}=\frac{-\cosh ^{2} \theta}{2+\cosh ^{2} \theta} \nu_{2}(\theta) .
\end{aligned}
$$

$$
\varphi_{h t}=\left\{\left(\mu_{2}, \mu_{1}\right) \in \mathbb{R}^{2}: \mu_{1}= \pm \frac{\sqrt{2}}{15} \mu_{2}\left(3 \mu_{2}+5 \mu_{3}\right), \quad \mu_{2}<-\frac{5}{3} \mu_{3}\right\}
$$

Application to a cubic memristor

Theorem

Consider the cubic memristor with $\left(a^{2}-3 b+3 \beta\right) /(3 \beta)>0$ sufficiently small, and suppose that $0<3 b-a^{2}<3 \xi / \beta$.
Then there exists $K<0$ with $K<(-5 / 3)\left(a^{2}-3 b+3 \beta\right)<0$, such that the system has an infinite number of stable periodic orbits; in particular, for any initial condition $\left(x_{0}, y_{0}, z_{0}\right) \in \mathbb{R}^{3}$ with $x_{0} \neq 0$ or $y_{0} \neq 0$ and

$$
\min \{A, B\}<-\beta x_{0}-\xi y_{0}+\xi z_{0}-\beta q\left(z_{0}\right)<\max \{A, B\}
$$

where

$$
\begin{aligned}
& A=\frac{1}{27}\left(a-\sqrt{a^{2}-3 b+3 \beta}\right)\left(6 b \beta-9 \xi+3 \beta^{2}-a^{2} \beta+a \beta \sqrt{a^{2}-3 b+3 \beta}\right) \\
& B=-\frac{1}{27}\left(a+\sqrt{a^{2}-3 b+3 \beta}\right)\left(9 \xi-6 b \beta-3 \beta^{2}+a^{2} \beta+a \beta \sqrt{a^{2}-3 b+3 \beta}\right),
\end{aligned}
$$

the steady state solution is periodic. Moreover, the periodic orbits generate a topological sphere Ω foliated by such periodic orbits.

Application to a 4D memristor oscillator

$$
\begin{aligned}
& \dot{y}_{1}=y_{4} \\
& \dot{y}_{2}=y_{3}-y_{4} \\
& \dot{y}_{3}=-\beta y_{2}+\gamma y_{3} \\
& \dot{y}_{4}=y_{2}-W\left(y_{1}\right) y_{4}
\end{aligned}
$$

$$
\begin{array}{l|l}
& H\left(y_{1}, y_{2}, y_{3}, y_{4}\right)=\beta\left(y_{4}+q\left(y_{1}\right)\right)-\gamma\left(y_{1}+y_{2}\right)+y_{3}, \\
\dot{y}_{1}=y_{4}, & S_{h}=\left\{\left(y_{1}, y_{2}, y_{3}, y_{4}\right) \in \mathbb{R}^{4}: H\left(y_{1}, y_{2}, y_{3}, y_{4}\right)=h\right\} . \\
\dot{y}_{2}=y_{3}-y_{4}, \\
\dot{y}_{3}=-\beta y_{2}+\gamma y_{3}, \\
\dot{y}_{4}=y_{2}-W\left(y_{1}\right) y_{4},
\end{array} \quad \begin{aligned}
& \dot{x}_{1}=\frac{\gamma}{\beta}\left(x_{1}+x_{2}\right)-q\left(x_{1}\right)-\frac{1}{\beta} x_{3}+\frac{h}{\beta}, \\
& \dot{x}_{2}=x_{3}-\frac{\gamma}{\beta}\left(x_{1}+x_{2}\right)+q\left(x_{1}\right)+\frac{1}{\beta} x_{3}-\frac{h}{\beta}, \\
& \dot{x}_{3}=-\beta x_{2}+\gamma x_{3} .
\end{aligned}
$$

$$
\begin{gathered}
\begin{array}{l}
\dot{x}_{1}=\frac{\gamma}{\beta}\left(x_{1}+x_{2}\right)-q\left(x_{1}\right)-\frac{1}{\beta} x_{3}+\frac{h}{\beta}, \\
\dot{x}_{2}=x_{3}-\frac{\gamma}{\beta}\left(x_{1}+x_{2}\right)+q\left(x_{1}\right)+\frac{1}{\beta} x_{3}-\frac{h}{\beta}, \\
\dot{x}_{3}=-\beta x_{2}+\gamma x_{3} .
\end{array} \quad \begin{array}{c}
A_{C}=\frac{1}{\beta}\left(\begin{array}{ccc}
\gamma-a \beta & \gamma & -1 \\
a \beta-\gamma & -\gamma & 1+\beta \\
0 & -\beta^{2} & \gamma \beta
\end{array}\right), \\
A_{E}=\frac{1}{\beta}\left(\begin{array}{ccc}
\gamma-b \beta & \gamma & -1 \\
b \beta-\gamma & -\gamma & 1+\beta \\
0 & -\beta^{2} & \gamma \beta
\end{array}\right), \\
\dot{\mathbf{x}}=\left(\begin{array}{ccc}
t_{E} & -1 & 0 \\
m_{E} & 0 & -1 \\
d_{E} & 0 & 0
\end{array}\right) \mathbf{x}+\left(\begin{array}{c}
t_{C}-t_{E} \\
m_{C}-m_{E} \\
d_{C}-d_{E}
\end{array}\right) \operatorname{sat}\left(\mathbf{e}_{1}^{T} \mathbf{x}\right)+\frac{h}{\beta}\left(\begin{array}{l}
1 \\
\gamma \\
\beta
\end{array}\right)
\end{array}, .
\end{gathered}
$$

$$
\dot{\mathrm{x}}=\left(\begin{array}{ccc}
t_{E} & -1 & 0 \\
m_{E} & 0 & -1 \\
d_{E} & 0 & 0
\end{array}\right) \mathrm{x}+\left(\begin{array}{c}
t_{C}-t_{E} \\
m_{C}-m_{E} \\
d_{C}-d_{E}
\end{array}\right) \text { sat }\left(\mathbf{e}_{1}^{T} \mathrm{x}\right)+\frac{h}{\beta}\left(\begin{array}{c}
1 \\
\gamma \\
\beta
\end{array}\right)
$$

$h \in \mathbb{R}$ and $\beta \neq 0, \quad\left(x_{1}(\tau), x_{2}(\tau), x_{3}(\tau)\right) \in \mathbb{R}^{3}$

$$
\mathbf{y}(\tau)=\left(\begin{array}{c}
x_{1}(\tau) \\
\left(\gamma^{2}-\beta-1\right) x_{1}(\tau)-\gamma x_{2}(\tau)+x_{3}(\tau) \\
\left(\gamma^{3}-2 \beta \gamma\right) x_{1}(\tau)+\left(\beta-\gamma^{2}\right) x_{2}(\tau)+\gamma x_{3}(\tau) \\
\gamma x_{1}(\tau)-x_{2}(\tau)-q\left(x_{1}(\tau)\right)+h / \beta
\end{array}\right)
$$

Theorem

Take $m_{C}>0, \varepsilon=m_{C} t_{C}-d_{C}$, and assume the non-degeneracy condition

$$
\rho=d_{C} m_{C}-d_{C} m_{E}+d_{E} m_{C}-m_{C}^{2} t_{E} \neq 0
$$

Then, for $\varepsilon=0$ the 4D system undergoes a focus-centerlimit cycle bifurcation simultaneously on all the levels S_{h} with $|h|<\left|d_{C}\right| \neq 0$.
Thus, from the lineal center configurations in the central zone, which exist for $\varepsilon=0$, an infinite number of stable periodic orbits simultaneously appears for $\varepsilon \rho>0$ and ε sufficiently small.

Theorem

Take $m_{C}>0, \varepsilon=m_{C} t_{C}-d_{C}$, and assume the non-degeneracy condition

$$
\rho=d_{C} m_{C}-d_{C} m_{E}+d_{E} m_{C}-m_{C}^{2} t_{E} \neq 0
$$

Then, for $\varepsilon=0$ the 4D system undergoes a focus-centerlimit cycle bifurcation simultaneously on all the levels S_{h} with $|h|<\left|d_{C}\right| \neq 0$.

In particular, if $\rho>0$ and $d_{C}<0$, then the periodic orbits bifurcates for $\varepsilon>0$ and are orbitally asymptotically stable. Otherwise, the bifurcating periodic orbits are unstable.

MFCC bifurcation

$$
a_{ \pm}(\gamma)=\frac{\gamma^{2}+1}{2 \gamma} \pm \sqrt{\left(\frac{\gamma^{2}+1}{2 \gamma}\right)^{2}-\beta}
$$

$$
\begin{aligned}
& \text { If } 0<\beta<1, \gamma<\sqrt{\beta(1+\beta)} \text { and } 0<b<a \text { then for } a=a_{+}(\gamma) \text { the system } \\
& \text { undergoes a MFCC bifurcation, so that when } a \leq a_{+}(\gamma) \text { all the equilibria in } \\
& \text { central segment are stable, becoming unstable for } a>a_{+}(\gamma) \text {. }
\end{aligned}
$$

MFCC bifurcation

For $a-a_{+}(\gamma)>0$ and sufficiently small, there appears a bounded hypersurface $\Omega \subset \mathbb{R}^{4}$ foliated by stable periodic orbits.

a

Outline

（1）Memristor oscillators
－Motivation
－Main contributions
－Application to discontinuous 3D PWL models
－Cubic Memristor Oscillator
－Application to a 4D memristor oscillator
－Publications

2）Big Bang Bifurcation
－Motivation
－Main contrilbutions
－Publications
（3）References

Publications

- On Discontinuous Piecewise Linear Models for Memristor Oscillators, International Journal of Bifurcation and Chaos. DOI: 10.1142/s0218127417300221.
- Unravelling the dynamical richness of 3D canonical memristor oscillators, Microelectronic Engineering. DOI:10.1016/j.mee.2017.08.004.
- Bifurcation set of a Bogdanov-Takens system with symmetry. Application to 3D cubic Memristor oscillators, Submitted .
- A multiple focus-center-cycle bifurcation in 4D discontinuous piecewise linear Memristor oscillators, Nonlinear Dynamics. DOI: 10.1007/s11071-018-4541-2.

Outline

(1) Memristor oscillators

- Motivation
- Main contributions
- Application to discontinuous 3D PWL models
- Cubic Memristor Oscillator
- Application to a 4D memristor oscillator
- Publications
(2) Big Bang Bifurcation
- Motivation
- Main contributions
- Publications
(3) References

$\equiv \quad$ 三ac

ORIGINAL RESEARCH

Occurrence of Big Bang Bifurcations in Discretized Sliding-mode Control Systems

Enric Fossas • Albert Granados

The authors consider a system with a relay based control and a linear switching manifold defined by

$$
\dot{\mathbf{x}}=\left\{\begin{array}{lll}
A \mathbf{x}+\mathbf{b}, & \text { if } & \sigma(\mathbf{x}) \geq 0, \\
A \mathbf{x}-\mathbf{b}, & \text { if } & \sigma(\mathbf{x})<0,
\end{array}\right.
$$

where

$$
A=\left(\begin{array}{cc}
0 & 1 \\
-a_{0} & -a_{1}
\end{array}\right), \quad \mathbf{b}=\binom{0}{b k},
$$

and

$$
\sigma(\mathbf{x})=\mathbf{e}_{1}^{T} \mathbf{x}+c \mathbf{e}_{2}^{T} \mathbf{x}-y_{c} .
$$

[Fossas and Granados, 2013]

$$
\dot{\mathbf{x}}=\mathbf{F}(\mathbf{x})= \begin{cases}A \mathbf{x}+\mathbf{b}_{L}, & \text { if } \quad \mathbf{e}_{1}^{T} \mathbf{x} \leq 0, \tag{22}\\ A \mathbf{x}+\mathbf{b}_{R}, & \text { if } \quad \mathbf{e}_{1}^{T} \mathbf{x}>0,\end{cases}
$$

where matrix A and vectors $\mathbf{b}_{\{L, R\}}$ are

$$
A=\left(\begin{array}{cc}
-c a_{0} & a_{0} c^{2}-a_{1} c+1 \\
-a_{0} & c a_{0}-a_{1}
\end{array}\right), \mathbf{b}_{R}=\binom{b k c-c a_{0} y_{c}}{b k-a_{0} y_{c}}, \mathbf{b}_{L}=\binom{-b k c-c a_{0} y_{c}}{-b k-a_{0} y_{c}},
$$

and \mathbf{e}_{1} is the first canonical vector.

Stroboscopic map

For $|A|=a_{0} \neq 0$, a fixed $t>0$ and taking into account the solutions of each vector field, the stroboscopic map is defined by

$$
P(\mathbf{x} ; t)= \begin{cases}e^{A t} \mathbf{x}+\left(e^{A t}-I\right) A^{-1} \mathbf{b}_{L}, & \text { if } \quad \mathbf{e}_{1}^{T} \mathbf{x} \leq 0, \tag{23}\\ e^{A t} \mathbf{x}+\left(e^{A t}-l\right) A^{-1} \mathbf{b}_{R}, & \text { if } \quad \mathbf{e}_{1}^{T} \mathbf{x}>0,\end{cases}
$$

Stroboscopic map

For $|A|=a_{0} \neq 0$, a fixed $t>0$ and taking into account the solutions of each vector field, the stroboscopic map is defined by

$$
P(\mathbf{x} ; t)= \begin{cases}e^{A t} \mathbf{x}+\left(e^{A t}-I\right) A^{-1} \mathbf{b}_{L}, & \text { if } \quad \mathbf{e}_{1}^{T} \mathbf{x} \leq 0, \tag{23}\\ e^{A t} \mathbf{x}+\left(e^{A t}-l\right) A^{-1} \mathbf{b}_{R}, & \text { if } \quad \mathbf{e}_{1}^{T} \mathbf{x}>0,\end{cases}
$$

If $b c k \neq 0$ the map is discontinuous, and always has two fixed points given by

$$
\mathbf{x}_{\{L, R\}}^{*}=-A^{-1} \mathbf{b}_{\{L, R\}}
$$

Big Bang Bifurcation

Figure: $t=0.1, a_{0}=-2, a_{1}=-5, b=-1$ and $c=1.5$.

Big Bang Bifurcation

Figure: $t=0.1, a_{0}=-2, a_{1}=-5, b=-1$ and $c=1.5$.
They conjectured that when the eigenvalues of the matrix $e^{A t}$ are real and lower than 1, both fixed points are virtual and the sliding set is attractive, then the stroboscopic map has a BB bifurcation point at $\left(y_{c}, k\right)=(0,0)$.

Normalized canonical form [Freire et al., 2014]

Consider the planar piecewise linear system

$$
\dot{\mathbf{x}}=\left\{\begin{array}{lll}
A_{-} \mathbf{x}+\mathbf{b}_{-}, & \text {if } \quad \mathbf{e}_{1}^{T} \mathbf{x} \leq 0, \tag{24}\\
A_{+} \mathbf{x}+\mathbf{b}_{+}, & \text {if } \quad \mathbf{e}_{1}^{T} \mathbf{x}>0,
\end{array}\right.
$$

where $A_{ \pm}=\left(a_{i j}^{ \pm}\right)$are constant matrices of order 2 . If we consider the modal parameter $m_{\{L, R\}} \in\{0,1, i\}$ defined in each zone by

$$
m_{\{L, R\}}=\left\{\begin{array}{ccc}
i, & \text { if } & t_{\mp}^{2}-4 d_{\mp}<0 \\
0, & \text { if } & t_{\mp}^{2}-4 d_{\mp}=0 \\
1 & \text { if } & t_{\mp}^{2}-4 d_{\mp}>0
\end{array}\right.
$$

where i is the unit imaginary.

Normalized canonical form [Freire et al., 2014]

Then the system can be written into the normalized canonical form defined by

$$
\dot{\mathbf{x}}=\left\{\begin{array}{lll}
A_{L} \mathbf{x}-\mathbf{b}_{L}, & \text { if } & \mathbf{e}_{1}^{T} \mathbf{x} \leq 0, \tag{25}\\
A_{R} \mathbf{x}-\mathbf{b}_{R}, & \text { if } & \mathbf{e}_{1}^{T} \mathbf{x}>0,
\end{array}\right.
$$

where

$$
A_{j}=\left(\begin{array}{cc}
2 \gamma_{j} & -1 \tag{26}\\
\gamma_{j}^{2}-m_{j}^{2} & 0
\end{array}\right), \quad \mathbf{b}_{R}=\binom{-b}{a_{R}}, \quad \mathbf{b}_{L}=\binom{0}{a_{L}}, \quad j=\{L, R\} .
$$

Outline

(1) Memristor oscillators

- Motivation
- Main contributions
- Application to discontinuous 3D PWL models
- Cubic Memristor Oscillator
- Application to a 4D memristor oscillator
- Publications
(2) Big Bang Bifurcation
- Motivation
- Main contributions
- Publications
(3) References

The stroboscopic map when $A_{L}=A_{R}$

Given $m \in\{0,1, i\}$ and a fixed value $t>0$, the stroboscopic map P is defined by

$$
P(\mathbf{x} ; t)=\left\{\begin{array}{lll}
P_{L}(\mathbf{x} ; t)=e^{A t} \mathbf{x}-(\Phi-I) A^{-1} \mathbf{b}_{L}, & \text { if } & \mathbf{e}_{1}^{T} \mathbf{x} \leq 0, \\
P_{R}(\mathbf{x} ; t)=e^{A t} \mathbf{x}-(\Phi-I) A^{-1} \mathbf{b}_{R}, & \text { if } & \mathbf{e}_{1}^{T} \mathbf{x}>0,
\end{array}\right.
$$

where the matrix A is defined as in (26).

のดく

To alleviate notation, we define the auxiliary functions

$$
C_{k}=\left\{\begin{array}{cll}
\cosh (k t), & \text { if } & m=1, \\
\cos (k t), & \text { if } & m=i, \\
1, & \text { if } m=0,
\end{array} \quad S_{k}=\left\{\begin{array}{cll}
\sinh (k t), & \text { if } & m=1, \\
\sin (k t), & \text { if } & m=i, \\
k t, & \text { if } & m=0 .
\end{array}\right.\right.
$$

and for $k \geq 1$, and $m \in\{0,1, i\}$,

$$
\mu_{k}^{ \pm}:=C_{k} \pm \gamma S_{k} .
$$

Theorem

Given $m \in\{0,1, i\}, 0<t<1, \gamma \in \mathbb{R}$ such that $D=\gamma^{2}-m^{2}>0$ and $\gamma<0$, consider the functions

$$
\begin{aligned}
& h_{2}^{(1)}(\gamma)=\frac{e^{4 t \gamma}-e^{3 t \gamma} \mu_{1}^{+}-e^{2 t \gamma} \mu_{2}^{-}+e^{t \gamma} \mu_{1}^{-}}{1+e^{4 t \gamma}-2 C_{2} e^{2 t \gamma}} \\
& r_{2}^{(1)}(\gamma)=\frac{e^{2 t \gamma} S_{2}-\left(e^{3 t \gamma}+e^{t \gamma}\right) S_{1}}{1+e^{4 t \gamma}-2 C_{2} e^{2 t \gamma}}
\end{aligned}
$$

and

$$
b_{1}(\gamma)=\frac{h_{2}^{(1)}(\gamma)}{r_{2}^{(1)}(\gamma) D}, \quad b_{2}(\gamma)=\frac{2 h_{2}^{(1)}(\gamma)-1}{\sqrt{2} r_{2}^{(1)}(\gamma) D} .
$$

The following statements hold for map P.

(a) For all $b \in \mathbb{R}$ with $b_{1}(\gamma)<b<b_{2}(\gamma)$ there exists a unique $\beta \in(3 \pi / 4, \pi)$ defined by

$$
\beta=\arcsin \left(\frac{-b r_{2}^{(1)}(\gamma) D}{\sqrt{\left(1-h_{2}^{(1)}(\gamma)\right)^{2}+\left(h_{2}^{(1)}(\gamma)\right)^{2}}}\right)-\pi-\arctan \left(\frac{h_{2}^{(1)}(\gamma)}{1-h_{2}^{(1)}(\gamma)}\right),
$$

such that for all $\left(a_{R}, a_{L}\right) \in \Omega_{2}$ map P has a unique stable 2-periodic orbit, where

$$
\Omega_{2}=\left\{\left(a_{R}, a_{L}\right) \in \mathbb{R}^{2}: s_{2} a_{R}<a_{L}<s_{1} a_{R}, \quad s_{1} a_{R}<a_{L}<s_{2} a_{R}\right\}
$$

with $s_{1}=\tan (\beta)$ and $s_{2}=1 / s_{1}$.
(a) For all $b \in \mathbb{R}$ with $b_{1}(\gamma)<b<b_{2}(\gamma)$ there exists a unique $\beta \in(3 \pi / 4, \pi)$ defined by

$$
\beta=\arcsin \left(\frac{-b r_{2}^{(1)}(\gamma) D}{\sqrt{\left(1-h_{2}^{(1)}(\gamma)\right)^{2}+\left(h_{2}^{(1)}(\gamma)\right)^{2}}}\right)-\pi-\arctan \left(\frac{h_{2}^{(1)}(\gamma)}{1-h_{2}^{(1)}(\gamma)}\right),
$$

such that for all $\left(a_{R}, a_{L}\right) \in \Omega_{2}$ map P has a unique stable 2-periodic orbit, where

$$
\Omega_{2}=\left\{\left(a_{R}, a_{L}\right) \in \mathbb{R}^{2}: s_{2} a_{R}<a_{L}<s_{1} a_{R}, \quad s_{1} a_{R}<a_{L}<s_{2} a_{R}\right\}
$$

with $s_{1}=\tan (\beta)$ and $s_{2}=1 / s_{1}$.
(b) For all $b \in \mathbb{R}$ with $b \leq b_{1}(\gamma)$ map P has a unique stable 2-periodic orbit for all $a_{R}, a_{L} \in \mathbb{R}$ with $a_{R} \cdot a_{L}<0$.

Big Bang Bifurcation

Conjecture

Given $m \in\{0,1\}$ and $0<t<1$. Consider the two-parameter plane $\left(a_{R}, a_{L}\right)$, and the functions

$$
\begin{aligned}
& h_{3}^{(2)}(\gamma, t)=\frac{e^{4 t \gamma} \mu_{2}^{+}-e^{3 t \gamma} \mu_{3}^{+}-e^{t \gamma} \mu_{1}^{-}+1}{e^{6 t \gamma}-2 C_{3} e^{3 t \gamma}+1} \\
& r_{3}^{(2)}(\gamma, t)=\frac{e^{4 t \gamma} S_{2}-e^{3 t \gamma} S_{3}+e^{t \gamma} S_{1}}{e^{6 t \gamma}-2 C_{3} e^{3 t \gamma}+1}
\end{aligned}
$$

Big Bang Bifurcation

Conjecture

Given $m \in\{0,1\}$ and $0<t<1$. Consider the two-parameter plane $\left(a_{R}, a_{L}\right)$, and the functions

$$
\begin{aligned}
& h_{3}^{(2)}(\gamma, t)=\frac{e^{4 t \gamma} \mu_{2}^{+}-e^{3 t \gamma} \mu_{3}^{+}-e^{t \gamma} \mu_{1}^{-}+1}{e^{6 t \gamma}-2 C_{3} e^{3 t \gamma}+1} \\
& r_{3}^{(2)}(\gamma, t)=\frac{e^{4 t \gamma} S_{2}-e^{3 t \gamma} S_{3}+e^{t \gamma} S_{1}}{e^{6 t \gamma}-2 C_{3} e^{3 t \gamma}+1}
\end{aligned}
$$

Then for $\gamma+m<0$ sufficiently small and

$$
b=\min \left\{\frac{1}{\gamma+m}, F(\gamma, t)\right\},
$$

where F is defined by

$$
F(\gamma, t)=\frac{1}{\gamma^{2}-m^{2}} \frac{2 h_{3}^{(2)}(\gamma, t)-1}{\sqrt{2} r_{3}^{(2)}(\gamma, t)}
$$

the stroboscopic map P has at $(0,0)$ a big bang bifurcation point of codimension two.

Figure: (a) $m=0, t=0.9, \gamma=-0.2$ and $b=1 / \gamma$.
(c) $m=1, t=0.9$, $\gamma=-1.05$ and $b=F(\gamma, t) \approx-9.27$.

Outline

(1) Memristor oscillators

- Motivation
- Main contributions
- Application to discontinuous 3D PWL models
- Cubic Memristor Oscillator
- Application to a 4D memristor oscillator
- Publications
(2) Big Bang Bifurcation
- Motivation
- Main contributions
- Publications
(3) References

Publications

- On the Big Bang Bifurcation in the stroboscopic map for discontinuous PWL systems. An application in Discretized Sliding-mode Control Systems. In preparation.

iii Thanks for your attention !!!

References

Chua, L. (1971).
Memristor: The missing circuit element.
IEEE Trans. Circuit Theory, 18:507-519.
Fossas, E. and Granados, A. (2013).
Occurrence of big bang bifurcations in discretized sliding-mode controlled systems.
Differential Equations and Dynamical Systems, 21:35-43.

Freire, E., Ponce, E., and Torres, F. (2014).
A general mechanism to generate three limit cycles in planar filippov systems with two zones.
Nonlinear Dynamics, 78(1):251-263.

Itoh, M. and Chua, L. (2008).
Memristor oscillators.
International Journal of Bifurcation and Chaos, 18(11):3183-3206.
Messias, M., Nespoli, C., and Botta, V. (2010).
Hopf bifurcation from lines of equilibria without parameters in memristor oscillators.
International Journal of Bifurcation and Chaos, 20(02):437-450.
Scarabello, M. and Messias, M. (2014).
Bifurcations leading to nonlinear oscillations in a 3D piecewise linear memristor oscillator.
International Journal of Bifurcation and Chaos, 24(01):1430001.

