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The qualitative theory of differential equations: the beginning

Henri Poincaré (1854-1912) proposed a new
approach to the study of differential equations:
to try to understand the behaviour of the
solution of an equation without resolving it.
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Vector fields vs. flows

Let f : S → TS be a Cr vector field on a surface S (r ≥ 1).

For every p ∈ S{
z′ = f (z)

z(0) = p. ⇒

Maximal integral curve Φp : Ip = R→ S

⇓

(If Φ is differentiable
with respect t)
f (z) = ∂

∂t Φ(0, z)

↖

Φ : R× S → S
(t , p) 7→ Φ(t , p) = Φp(t)

with Λ = {(t , p) : p ∈ S ∧ t ∈ Ip} open in R× S

Φ(0, p) = p;

Φ(s,Φ(t , p)) = Φ(s + t , p).
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Preliminaries

Let Φ be a Cr flow on a surface S (0 ≤ r ≤ ∞ or r = ω).

Given any p ∈ S, the orbit through the point p is the set ϕ(p) = Φp(Ip).

A point p is singular if ϕ(p) = {p}. Otherwise the point is regular and
either ϕ(p) is a topological circle (a periodic orbit) or ϕ(p) is an injective
copy of R in S.

Orbits foliate S: given two orbits either they coincide or they are disjoint.

Two flows Φ1,Φ2 on S are called topologically equivalent if there exists a
homeomorphism h : S → S taking orbits onto orbits and preserving the time
directions.
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The general goal

THE MAIN GOAL OF THE QUALITATIVE THEORY OF DIFFERENTIAL
EQUATIONS:

To understand as clearly as possible the asymptotic behaviour of the orbits of
a flow.

THE GOAL OF OUR THESIS:

To investigate, up to topological equivalence, the effects of analyticity in that
asymptotic behaviour.
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2 ω-limit sets fon analytic flows on the sphere
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Preliminaries

Let Φ be a C0 flow on a surface S.

The ω-limit set of an orbit ϕ(p) is

ωΦ(p) = {q ∈ S : ∃ tn → +∞ such that Φp(tn)→ q}.

ωΦ(p) is closed and invariant (i. e. a union of orbits).

When S is compact, ωΦ(p) is non-empty, connected and compact.

Poincaré-Bendixson Theorem in S2

If the ω-limit set of an orbit of a C0 flow on S2 does not contain singular
points, then that ω-limit set is a periodic orbit.
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Poincaré-Bendixson Theorem in S2

If the ω-limit set of an orbit of a C0 flow on S2 does not contain singular
points, then that ω-limit set is a periodic orbit.



Introduction ω-limit sets Classification of unstable global attractors on the plane Limit periodic sets Minimal flows on nonorientable surfaces

Preliminaries

Let Φ be a C0 flow on a surface S.

The ω-limit set of an orbit ϕ(p) is

ωΦ(p) = {q ∈ S : ∃ tn → +∞ such that Φp(tn)→ q}.

ωΦ(p) is closed and invariant (i. e. a union of orbits).

When S is compact, ωΦ(p) is non-empty, connected and compact.
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Preliminaries

Let Φ be a C0 flow on a surface S.

The α-limit set of an orbit ϕ(p) is

αΦ(p) = {q ∈ S : ∃ tn → −∞ such that Φp(tn)→ q}.

αΦ(p) is closed and invariant (i. e. a union of orbits).

When S is compact, αΦ(p) is non-empty, connected and compact.

Poincaré-Bendixson Theorem in S2

If the α-limit set of an orbit of a C0 flow on S2 does not contain singular
points, then that α-limit set is a periodic orbit.
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Generalization of Poincaré-Bendixson

Theorem (Vinograd,1952)

Ω ⊂ S2 is the ω-limit set of an orbit of some C0 (which can be got C∞) flow on
S2 if, and only if, Ω is the boundary (in S2) of some simply connected region
O ⊂ S2 (i. e. an open connected subset O ⊂ S2 such that S2 r O is also
connected).

Figure 1: This is an ω-limit. . .
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AIM OF THE SECTION. To come back to Poincaré’s hypotheses: to work
with analytic flows and study the properties of the ω-limit sets.
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Analytic case on the sphere

Theorem (Jiménez and Llibre)

If Φ is an analytic flow on S2, then any ω-limit set of Φ is either one (singular)
point, or the boundary of a cactus C (a connected union of finitely many
topological disks with connected complementary).

Conversely, if C is a cactus, then there are an analytic flow Φ and a
homeomorphism h : S2 → S2 such that Bd h(C) is an ω-limit set of Φ.

V. Jiménez and J. Llibre, A topological characterization of the ω-limit
sets for analytic flows on the plane, the sphere and the projective
plane, Adv. Math., 2007.
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Analytic case on the sphere

Theorem (Jiménez and Llibre)

If Φ is an analytic flow on S2, then any ω-limit set of Φ is either one (singular)
point, or the boundary of a cactus C (a connected union of finitely many
topological disks with connected complementary).

Conversely, if C is a cactus, then there are an analytic flow Φ and a
homeomorphism h : S2 → S2 such that Bd h(C) is an ω-limit set of Φ.

They also gave characterizations for analytic flows on the plane and the
proyective plane and outlined a characterization for analytic flows on proper
open subsets of the of the sphere and the proyective plane.
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But . . .

Figure 2: Auxiliary lemma

For the sphere (the plane and the projective plane), the lemma and the
characterization are correct.

However, we have found counterexamples for the lemma and for the
proposed characterizations on proper open subsets of the plane and the
projective plane.

J. G. E. and V. Jiménez, Some remarks on the ω-limit sets for plane,
sphere and projective plane analytic flows, Qual. Theory Dyn. Syst.,
2016
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But . . .

Figure 2: Counterexample on the plane minus two points.

For the sphere (the plane and the projective plane), the lemma and the
characterization are correct.

However, we have found counterexamples for the lemma and for the
proposed characterizations on proper open subsets of the plane and the
projective plane.

J. G. E. and V. Jiménez, Some remarks on the ω-limit sets for plane,
sphere and projective plane analytic flows, Qual. Theory Dyn. Syst.,
2016
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Characterization on open subsets of the sphere

J. G. E. and V. Jiménez, A topological characterization of the
omega-limit sets of analytic vector fields on open subsets of the
sphere, to appear in Discrete Contin. Dyn. Syst. Ser. B.
(arXiv:1711.00567).

Open question

Characterize ω-limit sets on open subsets of the projective plane.

Open question

Characterize ω-limit sets on the Klein bottle and its open subsets.

Open question

Characterize ω-limit sets on the torus (or, if possible, in surfaces in general)
and on its open subsets.
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3 Classification of unstable global attractors on the plane
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Aim of the section

Let f be a polynomial vector field on R2.

By the Bendixson’s compactification, we can consider an analytic flow on
R2 ∪ {∞} ≡ S2 with∞ as singular point and with the same orbits as f on R2.

We say that an orbit ϕ(p) is stable if for any ε > 0 there exists δ > 0 such that
d∞(p, q) < δ implies that all points from ϕ(q) stay at a distance less than ε
from ϕ(p).

A point q ∈ R2 is an unstable global attractor if ωΦ(p) = {q} for every p ∈ R2

and there is at least one unstable orbit on R2.

AIM OF THE SECTION. To characterize, up to topological equivalence, the
polynomial vector fields on R2 having an unstable global attractor.
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d∞(p, q) < δ implies that all points from ϕ(q) stay at a distance less than ε
from ϕ(p).
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and there is at least one unstable orbit on R2.
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First idea: to use the finite sectorial decomposition

Let Φ be an analytic flow on R2 and p be an isolated singular point. Then
either is a center or there exists a neighbourhood of p which is a finite union
of hyperbolic, parabolic and elliptic sectors.

Figure 3: Hyperbolic, parabolic and elliptic sectors.
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Necessary but not sufficient condition

Sharing the same sectorial decomposition is a necessary but not sufficient
condition for being topologically equivalent.

Figure 4: Two non-equivalent flows with the same sectorial decomposition
(elliptic-parabolic-elliptic-parabolic-hyperbolic-parabolic-hyperbolic in counterclockwise
sense).
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The Markus-Neumann Theorem

Let Φ be a continuous flow on R2.

Let Ω be an invariant region for Φ. We say that Ω is is parallel when the
restriction of Φ to Ω is topologically equivalent to either the strip, the annular
or the radial flow.

Figure 5: A strip, an annular and a radial region
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The Markus-Neumann Theorem

An orbit ϕ(p) of Φ is said to be ordinary if it is neighboured either by an
annular region or by a strip or radial region Ω such that:

(i) αΦ(q) = αΦ(p) and ωΦ(q) = ωΦ(p) for any q ∈ Ω;

(ii) Bd Ω is the union of αΦ(p), ωΦ(p) and exactly two orbits ϕ(a) and ϕ(b)
with αΦ(a) = αΦ(b) = αΦ(p) and ωΦ(a) = ωΦ(b) = ωΦ(p).

ϕ(p) is a separatrix if it is not ordinary.

Let us call S the union set of all its separatrices. The components of R2 \ S
are called the canonical regions. By a separatrix configuration, S+, we mean
the union of S together with a representative orbit from each canonical region.
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The Markus-Neumann Theorem

Let Φ1 and Φ2 be two flows on R2 and let S+
1 and S+

2 be, respectively, their
separatrix configurations. We say that S+

1 and S+
2 are equivalent if there is a

homeomorphism of R2 onto R2 carrying orbits of S+
1 onto orbits of S+

2
preserving time directions.

Markus-Neumann Theorem

Suppose that Φ1 and Φ2 are two continuous flows on R2 whose sets of
singular points are discrete. Then Φ1 and Φ2 are topologically equivalent if
and only if they have equivalent separatrix configurations.

L. Markus, Global structure of ordinary differential equations in the
plane, Trans. Amer. Math. Soc., 1954.

D. A. Neumann, Classification of continuous flows on 2-manifolds,
Proc. Amer. Math. Soc., 1975.
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Counterexample
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A new formulation

Sepatrix⇒ sepator

Theorem (J. G. E. and V. Jiménez)

Let Φ1 and Φ2 be two continuous flows on R2 whose sets of singular points
are discrete. Then Φ1 and Φ2 are topologically equivalent if and only if they
have equivalent separator configurations.

J. G. E. and V. Jiménez, On the Markus-Neumann Theorem, to
appear in J. Differential Equations, 2018. (arXiv:1707.05504 ).



Introduction ω-limit sets Classification of unstable global attractors on the plane Limit periodic sets Minimal flows on nonorientable surfaces

A new formulation

Sepatrix⇒ sepator

Theorem (J. G. E. and V. Jiménez)
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Fortunatelly . . .

Books and papers invoking the Markus-Neumann theorem in the setting of
analytic plane flows use an alternative definition of separatrix. Under the
additional assumption of finiteness of singular points, an orbit is called a
separatrix if and only if it is either a singular point, a limit cycle, or an orbit
lying in the boundary of an hyperbolic sector.

BUT our first counterexample in this section shows that there may be orbits
bounding hyperbolic sectors which are not separatrices in the
Markus-Neumann sense!!

It is not difficult to show that this notion is, in fact, equivalent to that of
separator.

SO PAPERS IN THE ANALYTIC SETTINGS ARE CORRECT!
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Characterization of unstable global attractors

J. G. E. and V. Jiménez, A topological classification of plane
polynomial systems having a globally attracting singular point,
Electron. J. Qual. Theory Differ. Equ., 2018. (arXiv:1708.00245)
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Figure 6: Phase portrait of x ′ = −((1 + x2)y + x3)5, y ′ = y2(y2 + x3).
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4 Limit periodic sets
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Aim of the section

Let {fλ}λ∈Λ be a family of polynomial vector field on R2 (polynomially
dependent on the parameter λ; Λ = Rm for some positive integer m).

For any λ ∈ Λ, let f̂λ be the associated analytic vector field on R2 ∪ {∞}
(Bendixson’s compactification).

A limit periodic set for (fλ)λ∈Λ at λ0 is a closed set Γ ⊂ R2 for which there
exist a sequence (λn)n and a sequence (γn)n of circles in R2 such that (λn)n

converges to λ0, (γn)n converges to Γ̂ in the Hausdorff topology of S2 and, for
every n, the vector field fλn has γn as a limit cycle.

AIM OF THE SECTION. To characterize, up to homeomorphism, the nature
of limit periodic sets.
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Example 1

Γ

λ = 0.1

λ = 0.05

Figure 7: An arc.
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Example 2

Figure 8: The union of an arc and a circle.
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Our solution

Theorem (A. Belotto and J. G. E.)

Let (fλ)λ∈Λ be a polynomial family of planar vector fields and Γ be a limit
periodic set for (fλ)λ∈Λ. Then the compactification Γ̂ ⊂ S2 is a graph.

Conversely, if Γ is a nonempty closed subset of R2 whose compactification
Γ̂ ⊂ S2 is a graph, then there exists a homeomorphism h : S2 → S2 and a
polynomial family of planar vector fields (fλ)λ∈Λ having h(Γ) as a limit periodic
set.

A. Belotto and J. G. E., Topological classification of limit periodic sets
of polynomial planar vector fields, to appear in Publicacions
Matemàtiques, 2018. (arXiv:1702.04965).
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5 Minimal flows on nonorientable surfaces
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Aim of the section

A flow on a surface S is called minimal if all the orbits are dense on S.

Figure 9: Irrational flow on the torus

AIM OF THE SECTION. To characterize surfaces admiting analytic minimal
flows.
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Preliminaries

The only compact surface admitting a minimal flow is the torus. (A
consequence of the Poincaré-Hopf Index Theorem).

J. C. Benière, in his PhD Thesis (1998), proved that all noncompact
orientable surfaces of genus g ≥ 1 possess a minimal flow.

G. Soler, in his Master Thesis (1999), proved that a nonorientable
surface admits transitive flows if and only if g ≥ 3.

It is not difficult to show that no nonorientable surface of genus g = 3
admits a minimal flow.
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Our results

Theorem (J. G. E., D. Peralta-Salas and G. Soler)

Let S be a nonorientable noncompact surface of finite genus g. Then there
exists a minimal analytic flow on S if and only if g ≥ 4.

Theorem (J. G. E., D. Peralta-Salas and G. Soler)

There exist nonorientable surfaces of infinite genus with minimal analytic
flows.

J. G. E., D. Peralta-Salas and G. Soler, Existence of minimal flows on
nonorientable surfaces, Discrete and Contin. Dyn. Syst., 2017.
(arXiv:1608.08788 ).
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Our results

Our proofs of both results consist in building surfaces and vector fields by
suspending interval exchange transformations (a certain kind of piecewise
affine maps of the unit interval).
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Our results

Our proofs of both results consist in building surfaces and vector fields by
suspending interval exchange transformations (a certain kind of piecewise
affine maps of the unit interval).

The keystone for the proof of the finite genus case is:

Theorem (Linero and Soler)

For every n ≥ 4 and 1 ≤ k ≤ n, there exists an (n, k)-i.e.t. all whose orbits
are dense.

A. Linero and G. Soler, Minimal interval exchange transformations
with flips., Ergodic Theory of Dynamical Systems, 2017.
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Our results

Our proofs of both results consist in building surfaces and vector fields by
suspending interval exchange transformations (a certain kind of piecewise
affine maps of the unit interval).

The proof of the infinite genus case is independent of the Linero and Soler
Theorem:

Proposition (J. G. E., D. Peralta-Salas and G. Soler)

There exists a minimal i.e.t. with flips and with infinitely many discontinuities.

We conjecture that a future development in the study of interval exchange
transformations will allow us to prove that any nonorientable surface of infinite
genus is minimal.
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Characterization on open subsets of the sphere

∅ ( A ( S2 is a shrub if it is a compact, connected, locally connected subset
of S2 with connected complementary.

The closure of any of the components of Int A is a disk: the leaves of the
shrub.

Figure 10: A shrub.
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B ⊂ A is a m-prickly cactus if it is the
union of a cactus D and finitely many
arcs {Ai}m

i=1, with every Ai intersecting
D at only one endpoint of Ai , ui , and
(Ai \ {ui})∩ (Ai′ \ {ui′}) = ∅ whenever
i 6= i ′.
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Characterization on open subsets of the sphere

∅ ( A ( S2 is a shrub if it is a compact, connected, locally connected subset
of S2 with connected complementary.

The closure of any of the components of Int A is a disk: the leaves of the
shrub.

u ∈ Bd A is an odd vertex if either u is
not a star point in Bd A or u is in no
leaf of A and u is an n-star point in
Bd A for some odd integer n.

Figure 10: A shrub.
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The closure of any of the components of Int A is a disk: the leaves of the
shrub.

Let D ⊂ A be a cactus. We say that D
is an odd cactus if there is an n-prickly
cactus neighbouring D in A for some
odd integer n.
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Characterization on open subsets of the sphere

Theorem

Let T ⊂ S2 be totally disconnected. If Φ is an analytic flow on S2 \ T , then any
ω-limit set for Φ is the boundary of a shrub A. Moreover, all odd vertexes of
the shrub are contained in T and every odd cactus in the shrub must
intersect T .

Conversely, let A ⊂ S2 be a shrub and let T contain all odd vertexes and one
point from each of the odd cactuses of A. Then there are a homeomorphism
h : S2 → S2 and a C∞ flow Φ on S2, analytic at least on h(S2 \ T ), having the
boundary of h(A) as an ω-limit set.

J. G. E. and V. Jiménez, A topological characterization of the
omega-limit sets of analytic vector fields on open subsets of the
sphere, to appear in Discrete Contin. Dyn. Syst. Ser. B.
(arXiv:1711.00567).
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