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Universitat Politècnica de Catalunya

Murcia, October 4th, 2018
DDays 2018



Global instability

What is Global instability in Hamiltonian systems?
Assume a Hamiltonian system given by the Hamiltonian:

H(q, p, I , ϕ) = h0(q, p, I ) + εh1(q, p, I , ϕ, t). (1)

For ε = 0,

İ =
∂h0

∂ϕ
= 0⇒ I = constant. (2)

There exists a global instability in the variable I if for a ε 6= 0, there exists
an orbit of the system (1) such that

4I := I (T )− I (0) = O(1). (3)

This instability is also called Arnold diffusion.
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Arnold example The origin

In 1964, V.I. Arnold proposed an example of a nearly-integrable
Hamiltonian with 2 + 1/2 degrees of freedom

H(q, p, ϕ, I , t) =
1

2

(
p2 + I 2

)
+ ε(cos q − 1) (1 + µ(sinϕ+ cos t)) ,

and asserted that given any δ,K > 0, for any 0 < µ� ε� 0, there exists
a trajectory of this Hamiltonian system such that

I (0) < δ and I (T ) > K for some time T > 0.

Notice that this a global instability result for the variable I , since

İ = −∂H
∂ϕ

= −εµ(cos q − 1) cosϕ

is zero for ε = 0, so I remains constant, whereas I can have a drift of
finite size for any ε > 0 small enough.
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Arnold example The origin

Arnold’s Hamiltonian can be written as a nearly-integrable autonomous
Hamiltonian with 3 degrees of freedom

H∗(q, p, ϕ, I , s,A) =
1

2

(
p2 + I 2

)
+ A + ε(cos q− 1) (1 + µ(sinϕ+ cos s)) ,

which for ε = 0 is an integrable Hamiltonian h(p, I ,A) = 1
2

(
p2 + I 2

)
+ A.

Since h satisfies the (Arnold) isoenergetic nondegeneracy∣∣∣∣ D2h Dh
Dh> 0

∣∣∣∣ = −1 6= 0

By the KAM theorem proven by Arnold in 1963, the 5D phase space of H
is filled, up to a set of relative measure O(

√
ε) , with 3D-invariant tori Tω

with Diophantine frequencies ω = (ω1, ω2, 1):

|k1ω1 + k2ω2 + k0| ≥ γ/|k |τ for any 0 6= (k1, k2, k0) ∈ Z,

where γ = O(
√
ε), and τ ≥ 2.
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The a priori unstable system The result

Consider a pendulum and a rotor plus a time periodic perturbation
depending on two harmonics in the variables (ϕ, s):

Hε(p, q, I , ϕ, s) = ±
(
p2

2
+ cos q − 1

)
+

I 2

2
+ εh(q, ϕ, s) (4)

h(q, ϕ, s) = f (q)g(ϕ, s),

f (q) = cos q, g(ϕ, s) = a1 cos(k1ϕ+ l1s) + a2 cos(k2ϕ+ l2s),
(5)

with k1, k2, l1, l2 ∈ Z.

Theorem

Assume that a1a2 6= 0 and
∣∣∣k1 k2
l1 l2

∣∣∣ 6= 0 in (4)-(5). Then, for any I ∗ > 0,

there exists ε∗ = ε∗(I ∗, a1, a2) > 0 such that for any ε, 0 < ε < ε∗, there
exists a trajectory (p(t), q(t), I (t), ϕ(t)) such that for some T > 0

I (0) ≤ −I ∗ < I ∗ ≤ I (T ).
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The a priori unstable system Goals

To review the construction of scattering maps initiated in
[Delshams-Llave-Seara00], designed to detect global instability.

To compute explicitly several scattering maps to prove global
instability for the action I for any ε > 0 small enough.

To estimate the time of diffusion in some cases (at least for
k1 = l2 = 1 and l1 = k2 = 0 ).

To play with the parameter µ = a1/a2 to prove global instability for
any value of µ 6= 0,∞.

To describe bifurcations of the scattering maps.
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The a priori unstable system Assumptions and Reduction

It is easy to check that if

∆ := k1l2 − k2l1 = 0 or a1 = 0 or a2 = 0

there is no global instability for the variable I .

If ∆a1a2 6= 0, after some rational linear changes in the angles, we only
need to study two cases:

The first (and easier) case [Delshams-S17]

g(ϕ, s) = a1 cosϕ+ a2 cos s

The second case [Delshams-S17a]

g(ϕ, σ) = a1 cosϕ+ a2 cosσ,

where σ = ϕ− s.
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The a priori unstable system The unperturbed system

We deal with an a priori unstable Hamiltonian [Chierchia-Gallavotti94].

In the unperturbed case ε = 0, the Hamiltonian H0 is integrable formed by
the standard pendulum plus a rotor

H0(p, q, I , ϕ, s) = ±
(
p2

2
+ cos q − 1

)
+

I 2

2
.

I is constant: 4I := I (T )− I (0) ≡ 0.

For any 0 < ε� 1, there is a finite drift in the action of the rotor I :
4I = O(1), so we have global instability.

In short, this is is also frequently called Arnold diffusion.
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The a priori unstable system Paths of diffusion

Basically, we ensure the Arnold diffusion performing the following scheme:

To construct iterates under several Scattering maps and the Inner
map, giving rise to diffusing pseudo-orbits.

To use previous results about Shadowing [Fontich-Mart́ın00],
[Gidea-Llave-Seara14] for ensuring the existence of real orbits close to
the pseudo-orbits.
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The a priori unstable system Two dynamics in the NHIM

We have two important dynamics associated to the system: the inner and
the outer dynamics on a large invariant object Λ̃.

Λ̃ = {(0, 0, I , ϕ, s); I ∈ [−I ∗, I ∗] , (ϕ, s) ∈ T2}.

is a 3D Normally Hyperbolic Invariant Manifold (NHIM) with associated
4D stable W s

ε (Λ̃) and unstable W u
ε (Λ̃) invariant manifolds.

The inner dynamics is the dynamics restricted to Λ̃. (Inner map)

The outer dynamics is the dynamics along the invariant manifolds of
Λ̃. (Scattering map)

Remark: Due to the form of the perturbation, Λ̃ = Λ̃ε (not essential).
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Inner dynamics For the first case g(ϕ, s)

For the first case g(ϕ, s) = a1 cosϕ+ a2 cos s, the inner dynamics is
described by the Hamiltonian system with the Hamiltonian

K (I , ϕ, s) =
I 2

2
+ ε (a1 cosϕ+ ((((hhhha2 cos s ) .

In this case the inner dynamics is integrable.
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Inner dynamics For g(ϕ, σ), σ = ϕ− s

For g(ϕ, σ), the inner dynamics is described by the Hamiltonian

K (I , ϕ, σ) =
I 2

2
+ ε (a1 cosϕ+ a2 cosσ) ,

where σ = ϕ− s. The system associated to this Hamiltonian is not
integrable and two resonances arise in I = 0 and I = 1.
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Outer dynamics Scattering map

Let Λ̃ be a NHIM with invariant manifolds intersecting transversally along
a homoclinic manifold Γ. A scattering map is a map S defined by
S(x̃−) = x̃+ if there exists z̃ ∈ Γ satisfying

|φεt (z̃)− φεt (x̃∓)| −→ 0 as t −→ ∓∞

that is, W u
ε (x̃−) intersects transversally W s

ε (x̃+) in z̃ .
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Outer dynamics Scattering map

S is an exact symplectic map [Delshams-Llave-Seara08] and takes the form:

Sε(I , ϕ, s) =

(
I + ε

∂L∗

∂θ
(I , θ) +O(ε2), θ − ε ∂L

∗

∂I
(I , θ) +O(ε2), s

)
,

where θ = ϕ− Is and L∗(I , θ) is the Reduced Poincaré function, or more simply
in the variables (I , θ):

Sε(I , θ) =

(
I + ε

∂L∗

∂θ
(I , θ) +O(ε2), θ − ε ∂L

∗

∂I
(I , θ) +O(ε2)

)
,

The variable s remains fixed under Sε: it plays the role of a parameter

Up to first order in ε, Sε is the −ε-time flow of the Hamiltonian L∗(I , θ)

The scattering map jumps O(ε) distances along the level curves of L∗(I , θ)

Now, we are going to construct the Reduced Poincaré function L∗.
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Outer dynamics The Melnikov Potential

To get a scattering map we search for homoclinic orbits to Λ̃ε

Proposition

Given (I , ϕ, s) ∈ [−I ∗, I ∗] × T2, assume that the real function

τ ∈ R 7−→ L(I , ϕ− I τ, s − τ) ∈ R

has a non degenerate critical point τ∗ = τ(I , ϕ, s), where

L(I , ϕ, s) =

∫ +∞

−∞
(cos q0(σ)− cos 0) g(ϕ+ Iσ, s + σ; 0)dσ.

Then, for 0 < |ε| small enough, there exists a transversal homoclinic point z̃ to

Λ̃ε, which is ε-close to the point z̃∗(I , ϕ, s) = (p0(τ∗), q0(τ∗), I , ϕ, s) ∈ W 0(Λ̃):

z̃ = z̃(I , ϕ, s) = (p0(τ∗) + O(ε), q0(τ∗) + O(ε), I , ϕ, s) ∈ W u(Λ̃ε) t W s(Λ̃ε).
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Outer dynamics The Melnikov Potential

In our model q0(t) = 4 arctan et , p0(t) = 2/cosh t is the separatrix for
positive p of the standard pendulum P(q, p) = p2/2 + cos q − 1.

For g(ϕ, s) = a1 cosϕ+ a2 cos s, the Melnikov potential becomes

L(I , ϕ, s) = A1(I ) cosϕ+ A2 cos s,

where A1(I ) =
2π I a1

sinh
(
I π
2

) and A2 =
2π a2

sinh
(
π
2

) .

For g(ϕ, σ) = a1 cosϕ+ a2 cosσ (σ = ϕ− s), the Melnikov potential
becomes

L(I , ϕ, σ) = A1(I ) cosϕ+ A2(I ) cosσ,

where A1(I ) is as before but now A2(I ) =
2 (I − 1)π a2

sinh
(

(I−1)π
2

) .
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Outer dynamics The Melnikov Potential

The Melnikov potentials are similar in both cases.

Figure: The Melnikov Potential, µ = a1/a2 = 0.6, I = 1, g(ϕ, s).
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Outer dynamics Reduced Poincaré function

Finally, the function L∗(I , θ) can be defined:

Definition

The Reduced Poincaré function is

L∗(I , θ) = L(I , ϕ− I τ∗(I , ϕ, s), s − τ∗(I , ϕ, s)),

where θ = ϕ− I s.

Therefore the definition of L∗(I , θ = ϕ− Is) depends on the function
τ∗(I , ϕ, s).
So, we need to calculate τ∗ to obtain the L∗.
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Outer dynamics The function τ ∗(I , ϕ, s)

From the Proposition given above, we look for τ∗ such that
∂L
∂τ (I , ϕ− I τ∗, s − τ∗) = 0.

Different view-points for τ∗ = τ∗(I , ϕ, s)

Look for critical points of L on the straight line, called NHIM line
R(I , ϕ, s) = {(I , ϕ− I τ, s − τ), τ ∈ R}.
Look for intersections between
R(I , ϕ, s) = {(I , ϕ− I τ, s − τ), τ ∈ R} and a crest which is a curve
of equation

∂L
∂τ

(I , ϕ− I τ, s − τ)|τ=0 = 0.

Note that the crests are characterized by τ∗(I , ϕ, s) = 0.
The crests were introduced in [Delshams-Huguet11]. A similar
construction appears in [Davletshin-Treschev16].
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Outer dynamics Crests

Definition - Crests [Delshams-Huguet11]

For each I , we call crest C(I ) the set of curves in the variables (ϕ, s) of equation

I
∂L
∂ϕ

(I , ϕ, s) +
∂L
∂s

(I , ϕ, s) = 0. (6)

which in our case can be rewritten as

g(ϕ, s): µα(I ) sinϕ+ sin s = 0, with α(I ) =
I 2 sinh( π

2
)

sinh( π I
2

)
, µ =

a1

a2
.

g(ϕ, σ = ϕ− s): µα(I ) sinϕ+ sinσ = 0, with α(I ) =
I 2 sinh(

(I−1)π
2

)

(I−1)2 sinh( π I
2

)
, µ =

a1

a2
.

For any I , the critical points of the Melnikov potential L(I , ·, ·) ((0, 0), (0, π),
(π, 0) and (π, π): one maximum, one minimum point and two saddle points)
always belong to the crest C(I ).

L∗(I , θ) is nothing else but L evaluated on the crest C(I ).

θ = ϕ− Is is constant on the NHIM line R(I , ϕ, s)
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Outer dynamics Geometrical interpretation

Figure: Level curves of L for µ = a1/a2 = 0.5, I = 1.2 and g(ϕ, s).
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Outer dynamics Geometrical interpretation

Understanding the behavior of the crests

⇓
Understanding the behavior of the Reduced Poincaré function

⇓
Understanding the Scattering map
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First case: g(ϕ, s) 0 < |µ| < 0.97

For |µα(I )| < 1, there are two crests CM,m(I ) parameterized by:

s = ξM(I , ϕ) = − arcsin(µα(I ) sinϕ) mod 2π (7)

ξm(I , ϕ) = arcsin(µα(I ) sinϕ) + π mod 2π

They are “horizontal” crests
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First case: g(ϕ, s) 0 < |µ| < 0.625

For each I , the NHIM line R(I , ϕ, s) and the crest CM,m(I ) has only one
intersection point.

The scattering map SM associated to the intersections between CM(I ) and
R(I , ϕ, s) is well defined for any ϕ ∈ T. Analogously for Sm, changing M to m. In
the variables (I , θ = ϕ− Is), both scattering maps SM, Sm are globally well defined.

(a) Level curves of L∗M(I , θ) (b) Level curves of L∗m(I , θ)
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First case: g(ϕ, s) 0.625 < |µ|

There are tangencies between CM,m(I , ϕ) and R(I , ϕ, s). For some value of
(I , ϕ, s), there are 3 points in R(I , ϕ, s) ∩ CM,m(I ).

This implies that there are 3 scattering maps associated to each crest with
different domains.(Multiple Scattering maps)
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First case: g(ϕ, s) 0.625 < |µ|

(c) The three types of level curves. (d) Zoom where the scattering maps
are different

Figure: Level curves of L∗M(I , θ), L∗(1)
M (I , θ) and L∗(2)

M (I , θ)
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First case: g(ϕ, s) |µ| > 0.97

For some values of I , |µα(I )| > 1, the two crests CM,m are parameterized by:

ϕ = ηM(I , s) = − arcsin(µα(I ) sin s) mod 2π (8)

ηm(I , s) = arcsin(µα(I ) sin s) + π mod 2π

They are “vertical” crests
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First case: g(ϕ, s) |µ| > 0.97

For the values of I for which horizontal crests become vertical, it is not
always possible to prolong in a continuous way the scattering maps, so the
domain of the scattering map has to be restricted.

Figure: The level curves of L∗M(I , θ), µ = 1.5.

In green, the region where the scattering map SM is not defined.
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First case: g(ϕ, s) Highways

Definition: Highways

Highways are the level curves of L∗ such that

L∗(I , θ) =
2πa1

sinh(π/2)
.

The highways are “vertical” in the variables (ϕ, s)

We always have a pair of highways. One goes up, the other goes
down (this depends on the sign of µ = a1/a2)

The highways give rise to fast diffusing pseudo-orbits
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First case: g(ϕ, s) Highways

Figure: The scattering map jumps O(ε) distances along the level curves of
L∗(I , θ)
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First case: g(ϕ, s) An example of pseudo-orbit

Figure: In red: Inner map, blue: Scattering map, black: Highways, µ = 1.5.
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First case: g(ϕ, s) Time of diffusion

An estimate of the total time of diffusion between −I ∗ and I ∗, close to the highway, is

Td =
Ts

ε

[
2 log

(
C

ε

)
+O(εb)

]
, for ε→ 0, where 0 < b < 1,

with

Ts = Ts(I
∗, a1, a2) =

∫ I∗

0

− sinh(πI/2)

πa1I sinψh(I )
dI ,

where ψh = θ − Iτ∗(I , θ) is the parameterization of the highway L∗(I , ψh) = A2, and

C = C(I ∗, a1, a2) = 16 |a1|

(
1 +

1.465√
1− µ2A2

)

where A = maxI∈[0,I∗] α(I ), with α(I ) =
sinh( π

2
) I 2

sinh( π I
2

)
and µ = a1/a2.

Note: This estimate agrees with the upper bounds given in [Bessi-Chierchia-Valdinoci01]

and quantifies the general optimal diffusion estimate O
(

1

ε
log

1

ε

)
of

[Berti-Biasco-Bolle03] and [Treschev04].
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Second case: g(ϕ, σ), σ = ϕ− s

Now we describe the case which the perturbation takes the form

h(ϕ, σ) = cos q (a1 cosϕ+ a2 cosσ) ,

where σ = ϕ− s.
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Second case: g(ϕ, σ), σ = ϕ− s Main differences

In the second case:

For |µα(I )| < 1, there are two crests CM,m(I ) parameterized by
σ = ξM(I , ϕ) and ξm(I , ϕ). For |µα(I )| > 1, CM,m(I ) parameterized
by ϕ = ηM(I , σ) and ηm(I , σ). The crests lie on the plane (ϕ, σ)

There are no Highways.

For any value of µ = a1/a2 is possible to find Ih and Iv such that for
I = Ih the crests are horizontal and for I = Iv the crests are vertical.

For any value of µ there exists I such that the crests and some NHIM
line are tangent.There are always multiple scattering maps
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Second case: g(ϕ, σ), σ = ϕ− s Computation of τ ∗

From the definitions of R(I , ϕ, s) and C(I ), we have

R(I , ϕ, s) ∩ C(I ) = {(I , ϕ− I τ∗(I , ϕ, s), s − τ∗(I , ϕ, s))} .

Introducing

τ∗(I , θ) := τ∗(I , ϕ− Is, 0), with θ = ϕ− Is = (1− I )ϕ+ Iσ,

one can see that on the plane (ϕ, σ = ϕ− s), the NHIM lines take the form

RI (ϕ, σ) = {(ϕ− I τ, σ − (I − 1)τ), τ ∈ R}

and that

RI (ϕ, σ) ∩ C(I ) = {(θ − I τ∗(I , θ), θ − (I − 1)τ∗(I , θ))} .

Therefore, the function τ∗(I , θ) is the time spent to go from a point (θ, θ)
in the diagonal σ = ϕ up to C(I ) with a velocity vector v = −(I , I − 1).
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Second case: g(ϕ, σ), σ = ϕ− s Kinds of scattering maps

The choice of the concrete curve of the crest and therefore of τ∗(I , θ) is
very important and useful.

Figure: Going down along NHIM
lines Figure: The “lower” crest

Green zones: I increases under the scattering map.
Red zones: I decreases under the scattering map.
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Second case: g(ϕ, σ), σ = ϕ− s Kinds of scattering maps

Figure: Going up along NHIM lines Figure: The “upper” crest
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Second case: g(ϕ, σ), σ = ϕ− s Kinds of scattering maps

Figure: Minimal time
Figure: Minimal |τ∗| between
“lower” and “upper” crest
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Second case: g(ϕ, σ), σ = ϕ− s Piecewise smooth S(I , θ)

In this picture we show a combination of 3 scattering maps.

Figure: First intersection
Figure: Minimal |τ∗| between
CM(I ) and Cm(I )
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A case with 3 + 1/2 d.o.f The system

We consider an a priori Hamiltonian system

Hε(p, q, I , ϕ, s) = ±
(
p2

2
+ cos q − 1

)
+ h(I ) + εf (q) g(ϕ, s), (9)

where I = (I1, I2), ϕ = (ϕ1, ϕ2), f (q) = cos q, h(I ) = Ω1I
2
1 /2 + Ω2I

2
2 /2

and
g(ϕ, s) = a1 cosϕ1 + a2 cosϕ2 + a3 cos s. (10)

The unperturbed system consists of a pendulum plus two rotors.

This is a direct generalization of the case considered in the first case.
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A case with 3 + 1/2 d.o.f Arnold diffusion

Theorem (Arnold diffusion for a two-parameter family)

Assume a1a2a3 6= 0 and |a1/a3|+ |a2/a3| < 0.625 in Hamiltonian
(9)+(10). Then, for any two actions I± and any δ there exists ε0 > 0 such
that for every 0 < |ε| < ε0 there exists an orbit x̃(t) and T > 0 such that

|I (x̃(0))− I−| ≤ δ and |I (x̃(T ))− I+| ≤ δ
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A case with 3 + 1/2 d.o.f Arnold diffusion

For |a1/a3|+ |a2/a3| < 0.625 there are two horizontal crests CM,m(I ), and
both scattering maps SM, Sm are globally well defined.

Figure: Horizontal crests: a1/a3 = a2/a3 = 0.48 ,Ω1I1 = Ω2I2 = 1.219.

Diffusing orbits are found by shadowing orbits of both scattering maps and
the inner dynamics.

Remark

Actually, we can prove that given any two actions I± and any path γ(s)
joining them in the actions space, there exists an orbit x̃(t) such that
I (x̃(t)) is δ-close to γ(Ψ(t)) for some parameterization Ψ.
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A case with 3 + 1/2 d.o.f Highways

We define a Highway as an invariant set H = {(I ,Θ(I ))} of the
Hamiltonian given by the reduced Poincaré function L∗(I , θ) which is
contained in the level energy L∗(I , θ) = A3. It is therefore a Lagrangian
manifold, there exists a function F (I ) such that Θ(I ) = ∇F (I ).
Therefore,

∂Θ1

∂I2
=
∂Θ2

∂I1
, i.e.,

∂2F

∂I2∂I1
=

∂2F

∂I1∂I2
.

Proposition

Consider the Hamiltonian (9)+(10). Assume a1a2a3 6= 0 and
|a1/a3|+ |a2/a3| < 0.625. For I1 and I2 close to infinity, the function F
takes the asymptotic form

F (I ) =
3π

2
(I1 + I2)−

∑
i=1,2

2ai sinh(π/2)

π4Ωi

(
π3ω3

i + 6π2ω2
i + 24πωi + 48

)
e−πωi/2

+O(ω2
1ω

2
2e
π(ω1+ω2)/2),
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A case with 3 + 1/2 d.o.f Highways

Proposition

(Highways in a very special case) Consider the Hamiltonian (9)+(10) and
a1 = a2 = a satisfying 2 |a/a3| < 0.625 and Ω1 = Ω2 = Ω.
Let O =

{
(I 0, θ0), . . . , (IN , θN)

}
be an orbit in a highway, N ∈ N such

that I 0
1 = I 0

2 and θ0
1 = θ0

2. Then, I i1 = I i2 = Ī i and θi1 = θi2 = θ̄i for any
i ∈ {0, . . . ,N} and can be described by

θ̄h(Ī ) =

arccos
(
A3(1−f (Ī ))

A(Ī )

)
+ ω̄ arccos(f (Ī )), Ī ≤ 0;

arccos
(
A3(1−f (Ī ))

A(Ī )

)
− ω̄ arccos(f (Ī )), I > 0;

or

θ̄H(I ) =

− arccos
(
A3(1−f (Ī ))

A(Ī )

)
− ω̄ arccos(f (Ī )), Ī ≤ 0;

− arccos
(
A3(1−f (Ī ))

A(Ī )

)
+ ω̄ arccos(f (Ī )), Ī > 0;

,

where f (Ī ) = ω̄A3 −
√

A2
3 + (ω̄ − 1)Ī 2A2(Ī )/

[
A3(ω̄2 − 1)

]
and ω̄ = ĪΩ1.
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Thank you very much.

Muchas gracias.

Moltes gràcies.

Muito obrigado.



Bibliography A short bibliography

Berti, Biasco, Bolle. Drift in phase space: a new variational mechanism with
optimal diffusion time.J.Math.Pures Appl..2003.

Delshams, de la LLave , Seara. A Geometric Approach to the Existence of Orbits
with Unbounded Energy in Generic Periodic Perturbations by a Potential of
Generic Geodesic Flows of T2.Comm. Math. Phys.. 2000.

Delshams, de la Llave, Seara. A geometric mechanism for diffusion in Hamiltonian
systems overcoming the large gap problem: heuristic and rigorous verification on a
model.Mem. Amer. Math. Soc.. 2006.

Delshams, de la Llave, Seara. Instability of high dimensional Hamiltonian systems:
Multiple resonances do not impede diffusion.Advances in Mathematics.2016.

Delshams, Huguet. Geography of resonanes and Arnold diffusion in a priori
unstable Hamiltonian systems. Nonlinearity. 2009.

Rodrigo G. Schaefer (UPC) Global Instability in Hamiltonian Systems Ddays 2018 45 / 45



Bibliography A short bibliography

Delshams, Huguet. A geometric mechanism of diffusion: Rigorous verification in a
priori unstable Hamiltonian systems. J. Differential Equations. 2011.

Delshams, Schaefer. Arnold Diffusion for a complete family of
perturbations.Regular and Chaotics Dynamics. 2017.

Delshams, Schaefer. Arnold diffusion for a complete family of perturbations with
two independent harmonics.Discrete and Continuous Dynamical Systems. 2018.

Gidea, de la Llave, Seara. A general mechanism of diffusion in Hamiltonian
systems: Qualitative results. arXiv . 2014.

Treschev. Evolution of slow variables in a priori unstable Hamiltonian systems.
Nonlinearity . 2004.

Rodrigo G. Schaefer (UPC) Global Instability in Hamiltonian Systems Ddays 2018 45 / 45


	Arnold example
	The origin

	The a priori unstable system
	The result
	Goals
	Assumptions and Reduction
	The unperturbed system
	Paths of diffusion
	Two dynamics in the NHIM

	Inner dynamics
	For the first case g(,s)
	For g(,), = -s

	Outer dynamics
	Scattering map
	The Melnikov Potential
	Reduced Poincaré function
	The function *(I,,s)
	Crests
	Geometrical interpretation

	First case: g(, s)
	0<||<0.97
	0<||<0.625
	0.625<||
	||>0.97
	 Highways
	An example of pseudo-orbit
	Time of diffusion

	Second case: g(,), = -s
	Main differences
	Computation of *
	Kinds of scattering maps
	Piecewise smooth S(I,)

	A case with 3 + 1/2 d.o.f
	The system
	Arnold diffusion
	Highways

	Bibliography
	A short bibliography


