Global Instability in Hamiltonian Systems

Amadeu Delshams Rodrigo G. Schaefer

Laboratory of Geometry and Dynamical Systems Universitat Politècnica de Catalunya

> Murcia, October 4th, 2018 DDays 2018

Global instability

What is Global instability in Hamiltonian systems?

Assume a Hamiltonian system given by the Hamiltonian:

$$H(q, p, I, \varphi) = h_0(q, p, I) + \varepsilon h_1(q, p, I, \varphi, t). \tag{1}$$

For $\varepsilon = 0$,

$$\dot{I} = \frac{\partial h_0}{\partial \varphi} = 0 \Rightarrow I = \text{constant}.$$
 (2)

There exists a global instability in the variable I if for a $\varepsilon \neq 0$, there exists an orbit of the system (1) such that

$$\triangle I := I(T) - I(0) = \mathcal{O}(1). \tag{3}$$

This instability is also called Arnold diffusion.

Table of contents

- Arnold example
- The a priori unstable system
- Inner dynamics
- Outer dynamics
- **5** First case: $g(\varphi, s)$
- **6** Second case: $g(\varphi, \sigma), \sigma = \varphi s$
- \bigcirc A case with 3 + 1/2 d.o.f

In 1964, V.I. Arnold proposed an example of a nearly-integrable Hamiltonian with 2+1/2 degrees of freedom

$$H(q, p, \varphi, I, t) = \frac{1}{2} (p^2 + I^2) + \varepsilon (\cos q - 1) (1 + \mu (\sin \varphi + \cos t)),$$

and asserted that given any $\delta, K>0$, for any $0<\mu\ll\varepsilon\ll0$, there exists a trajectory of this Hamiltonian system such that

$$I(0) < \delta$$
 and $I(T) > K$ for some time $T > 0$.

Notice that this a global instability result for the variable *I*, since

$$\dot{I} = -\frac{\partial H}{\partial \varphi} = -\varepsilon \mu (\cos q - 1) \cos \varphi$$

is zero for $\varepsilon=0$, so I remains constant, whereas I can have a drift of finite size for $any \ \varepsilon>0$ small enough.

Arnold's Hamiltonian can be written as a nearly-integrable autonomous Hamiltonian with 3 degrees of freedom

$$H^*(q, p, \varphi, I, s, A) = \frac{1}{2} (p^2 + I^2) + A + \varepsilon(\cos q - 1) (1 + \mu(\sin \varphi + \cos s)),$$

which for $\varepsilon=0$ is an integrable Hamiltonian $h(p,I,A)=\frac{1}{2}\left(p^2+I^2\right)+A$. Since h satisfies the (Arnold) isoenergetic nondegeneracy

$$\left| egin{array}{cc} D^2h & Dh \ Dh^ op & 0 \end{array}
ight| = -1
eq 0$$

By the KAM theorem proven by Arnold in 1963, the 5D phase space of H is filled, up to a set of relative measure $\mathrm{O}(\sqrt{\varepsilon})$, with 3D-invariant tori \mathcal{T}_{ω} with Diophantine frequencies $\omega=(\omega_1,\omega_2,1)$:

$$|k_1\omega_1 + k_2\omega_2 + k_0| \ge \gamma/|k|^{\tau}$$
 for any $0 \ne (k_1, k_2, k_0) \in \mathbb{Z}$,

where $\gamma = O(\sqrt{\varepsilon})$, and $\tau > 2$.

Consider a pendulum and a rotor plus a time periodic perturbation depending on two harmonics in the variables (φ, s) :

$$H_{\varepsilon}(p,q,I,\varphi,s) = \pm \left(\frac{p^2}{2} + \cos q - 1\right) + \frac{I^2}{2} + \varepsilon h(q,\varphi,s)$$
 (4)

$$h(q, \varphi, s) = f(q)g(\varphi, s),$$

$$f(q) = \cos q, \qquad g(\varphi, s) = a_1 \cos(k_1 \varphi + l_1 s) + a_2 \cos(k_2 \varphi + l_2 s),$$
with $k_1, k_2, l_1, l_2 \in \mathbb{Z}$. (5)

Theorem

Assume that $a_1a_2 \neq 0$ and $\begin{vmatrix} k_1 & k_2 \\ l_1 & l_2 \end{vmatrix} \neq 0$ in (4)-(5). Then, for any $I^* > 0$, there exists $\varepsilon^* = \varepsilon^*(I^*, a_1, a_2) > 0$ such that for any ε , $0 < \varepsilon < \varepsilon^*$, there exists a trajectory $(p(t), q(t), I(t), \varphi(t))$ such that for some T > 0

$$I(0) \leq -I^* < I^* \leq I(T).$$

Goals

- To review the construction of scattering maps initiated in [Delshams-Llave-Seara00], designed to detect global instability.
- To compute explicitly several scattering maps to prove global instability for the action I for any $\varepsilon > 0$ small enough.
- To estimate the time of diffusion in some cases (at least for $k_1 = l_2 = 1$ and $l_1 = k_2 = 0$).
- To play with the parameter $\mu = a_1/a_2$ to prove global instability for any value of $\mu \neq 0, \infty$.
- To describe bifurcations of the scattering maps.

It is easy to check that if

$$\Delta := k_1 l_2 - k_2 l_1 = 0$$
 or $a_1 = 0$ or $a_2 = 0$

there is no global instability for the variable I.

If $\Delta a_1 a_2 \neq 0$, after some rational linear changes in the angles, we only need to study two cases:

• The first (and easier) case [Delshams-S17]

$$g(\varphi,s)=a_1\cos\varphi+a_2\cos s$$

• The second case [Delshams-S17a]

$$g(\varphi,\sigma) = a_1 \cos \varphi + a_2 \cos \sigma$$

where $\sigma = \varphi - s$.

We deal with an a priori unstable Hamiltonian [Chierchia-Gallavotti94].

In the unperturbed case $\varepsilon=0$, the Hamiltonian H_0 is integrable formed by the standard pendulum plus a rotor

$$H_0(p,q,I,arphi,s)=\pm\left(rac{p^2}{2}+\cos q-1
ight)+rac{I^2}{2}.$$

I is constant:
$$\triangle I := I(T) - I(0) \equiv 0$$
.

For any $0 < \varepsilon \ll 1$, there is a finite drift in the action of the rotor I: $\triangle I = \mathcal{O}(1)$, so we have global instability.

In short, this is also frequently called Arnold diffusion.

Basically, we ensure the Arnold diffusion performing the following scheme:

- To construct iterates under several Scattering maps and the Inner map, giving rise to diffusing pseudo-orbits.
- To use previous results about Shadowing [Fontich-Martín00], [Gidea-Llave-Seara14] for ensuring the existence of real orbits close to the pseudo-orbits.

We have two important dynamics associated to the system: the inner and the outer dynamics on a large invariant object $\widetilde{\Lambda}$.

$$\widetilde{\Lambda} = \{(0,0,I,\varphi,s); I \in [-I^*,I^*], (\varphi,s) \in \mathbb{T}^2\}.$$

is a 3D Normally Hyperbolic Invariant Manifold (NHIM) with associated 4D stable $W_{\varepsilon}^{s}(\widetilde{\Lambda})$ and unstable $W_{\varepsilon}^{u}(\widetilde{\Lambda})$ invariant manifolds.

- The *inner dynamics* is the dynamics restricted to $\widetilde{\Lambda}$. (Inner map)
- The *outer dynamics* is the dynamics along the invariant manifolds of $\widetilde{\Lambda}$. (Scattering map)

Remark: Due to the form of the perturbation, $\widetilde{\Lambda} = \widetilde{\Lambda}_{\varepsilon}$ (not essential).

For the first case $g(\varphi, s) = a_1 \cos \varphi + a_2 \cos s$, the inner dynamics is described by the Hamiltonian system with the Hamiltonian

$$K(I,\varphi,s) = \frac{I^2}{2} + \varepsilon \left(a_1 \cos \varphi + a_2 \cos s\right).$$

In this case the inner dynamics is integrable.

For $g(\varphi, \sigma)$, the inner dynamics is described by the Hamiltonian

$$K(I, \varphi, \sigma) = \frac{I^2}{2} + \varepsilon (a_1 \cos \varphi + a_2 \cos \sigma),$$

where $\sigma = \varphi - s$. The system associated to this Hamiltonian is not integrable and two resonances arise in I = 0 and I = 1.

Outer dynamics

Scattering map

Let $\widetilde{\Lambda}$ be a NHIM with invariant manifolds intersecting transversally along a homoclinic manifold Γ . A scattering map is a map S defined by $S(\widetilde{x}_{-}) = \widetilde{x}_{+}$ if there exists $\widetilde{z} \in \Gamma$ satisfying

$$|\phi_t^{arepsilon}(ilde{z})-\phi_t^{arepsilon}(ilde{x}_\mp)| \longrightarrow 0 \ ext{as} \ t \longrightarrow \mp\infty$$

that is, $W^u_\varepsilon(\tilde{\mathbf{x}}_-)$ intersects transversally $W^s_\varepsilon(\tilde{\mathbf{x}}_+)$ in $\tilde{\mathbf{z}}$.

S is an exact symplectic map [Delshams-Llave-Seara08] and takes the form:

$$S_{\varepsilon}(I,\varphi,s) = \left(I + \varepsilon \frac{\partial \mathcal{L}^*}{\partial \theta}(I,\theta) + \mathcal{O}(\varepsilon^2), \theta - \varepsilon \frac{\partial \mathcal{L}^*}{\partial I}(I,\theta) + \mathcal{O}(\varepsilon^2), s\right),$$

where $\theta = \varphi - Is$ and $\mathcal{L}^*(I, \theta)$ is the Reduced Poincaré function, or more simply in the variables (I, θ) :

$$S_{\varepsilon}(I,\theta) = \left(I + \varepsilon \frac{\partial \mathcal{L}^*}{\partial \theta}(I,\theta) + \mathcal{O}(\varepsilon^2), \theta - \varepsilon \frac{\partial \mathcal{L}^*}{\partial I}(I,\theta) + \mathcal{O}(\varepsilon^2)\right),$$

- ullet The variable s remains fixed under $S_{arepsilon}$: it plays the role of a parameter
- Up to first order in ε , S_{ε} is the $-\varepsilon$ -time flow of the Hamiltonian $\mathcal{L}^*(I,\theta)$
- ullet The scattering map jumps $\mathcal{O}(arepsilon)$ distances along the level curves of $\mathcal{L}^*(I, heta)$

Now, we are going to construct the Reduced Poincaré function \mathcal{L}^* .

To get a scattering map we search for homoclinic orbits to $\tilde{\Lambda}_{\varepsilon}$

Proposition

Given $(I, \varphi, s) \in [-I^*, I^*] \times \mathbb{T}^2$, assume that the real function

$$au \, \in \, \mathbb{R} \, \longmapsto \, \mathcal{L}(\mathbf{I}, \varphi - \mathbf{I} \, au, \mathbf{s} - au) \, \in \, \mathbb{R}$$

has a non degenerate critical point $au^* = au(I, arphi, s)$, where

$$\mathcal{L}(I,\varphi,s) = \int_{-\infty}^{+\infty} (\cos q_0(\sigma) - \cos 0) g(\varphi + I\sigma, s + \sigma; 0) d\sigma.$$

Then, for $0<|\varepsilon|$ small enough, there exists a transversal homoclinic point \tilde{z} to $\widetilde{\Lambda}_{\varepsilon}$, which is ε -close to the point $\tilde{z}^*(I,\varphi,s)=(p_0(\tau^*),q_0(\tau^*),I,\varphi,s)\in W^0(\widetilde{\Lambda})$:

$$\tilde{z} = \tilde{z}(I, \varphi, s) = (p_0(\tau^*) + O(\varepsilon), q_0(\tau^*) + O(\varepsilon), I, \varphi, s) \in W^u(\widetilde{\Lambda}_{\varepsilon}) \, \pitchfork \, W^s(\widetilde{\Lambda}_{\varepsilon}).$$

In our model $q_0(t) = 4 \arctan e^t$, $p_0(t) = 2/\cosh t$ is the separatrix for positive p of the standard pendulum $P(q, p) = p^2/2 + \cos q - 1$.

• For $g(\varphi, s) = a_1 \cos \varphi + a_2 \cos s$, the Melnikov potential becomes

$$\mathcal{L}(I,\varphi,s) = A_1(I)\cos\varphi + A_2\cos s,$$

where
$$A_1(I)=rac{2\,\pi\,I\,a_1}{\sinh\left(rac{I\,\pi}{2}
ight)}$$
 and $A_2=rac{2\,\pi\,a_2}{\sinh\left(rac{\pi}{2}
ight)}.$

• For $g(\varphi, \sigma) = a_1 \cos \varphi + a_2 \cos \sigma$ ($\sigma = \varphi - s$), the Melnikov potential becomes

$$\mathcal{L}(I,\varphi,\sigma) = A_1(I)\cos\varphi + A_2(I)\cos\sigma,$$

where $A_1(I)$ is as before but now $A_2(I) = \frac{2(I-1)\pi a_2}{\sinh\left(\frac{(I-1)\pi}{2}\right)}$.

The Melnikov potentials are similar in both cases.

Figure: The Melnikov Potential, $\mu = a_1/a_2 = 0.6$, I = 1, $g(\varphi, s)$.

Finally, the function $\mathcal{L}^*(I,\theta)$ can be defined:

Definition

The Reduced Poincaré function is

$$\mathcal{L}^*(I,\theta) = \mathcal{L}(I,\varphi - I\tau^*(I,\varphi,s), s - \tau^*(I,\varphi,s)),$$

where $\theta = \varphi - I s$.

Therefore the definition of $\mathcal{L}^*(I, \theta = \varphi - Is)$ depends on the function $\tau^*(I, \varphi, s)$.

So, we need to calculate τ^* to obtain the \mathcal{L}^* .

From the Proposition given above, we look for τ^* such that $\frac{\partial \mathcal{L}}{\partial \tau}(I, \varphi - I \tau^*, s - \tau^*) = 0$.

Different view-points for $\tau^* = \tau^*(I, \varphi, s)$

- Look for critical points of \mathcal{L} on the straight line, called NHIM line $R(I, \varphi, s) = \{(I, \varphi I \tau, s \tau), \tau \in \mathbb{R}\}.$
- Look for intersections between $R(I, \varphi, s) = \{(I, \varphi I \tau, s \tau), \tau \in \mathbb{R}\}$ and a crest which is a curve of equation

$$\frac{\partial \mathcal{L}}{\partial \tau}(I, \varphi - I\tau, s - \tau)|_{\tau=0} = 0.$$

Note that the crests are characterized by $\tau^*(I, \varphi, s) = 0$.

The crests were introduced in [Delshams-Huguet11]. A similar construction appears in [Davletshin-Treschev16].

Definition - Crests [Delshams-Huguet11]

For each I, we call *crest* C(I) the set of curves in the variables (φ, s) of equation

$$I\frac{\partial \mathcal{L}}{\partial \varphi}(I,\varphi,s) + \frac{\partial \mathcal{L}}{\partial s}(I,\varphi,s) = 0.$$
 (6)

which in our case can be rewritten as

$$g(\varphi, s)$$
: $\mu\alpha(I) \sin \varphi + \sin s = 0$, with $\alpha(I) = \frac{I^2 \sinh(\frac{\pi}{2})}{\sinh(\frac{\pi I}{2})}$, $\mu = \frac{a_1}{a_2}$.

$$g(\varphi, \sigma = \varphi - s): \ \mu\alpha(I) \sin \varphi + \sin \sigma = 0, \qquad \text{with } \alpha(I) = \frac{I^2 \sinh(\frac{(I-1)\pi}{2})}{(I-1)^2 \sinh(\frac{\pi}{2}I)}, \quad \mu = \frac{a_1}{a_2}.$$

- For any I, the critical points of the Melnikov potential $\mathcal{L}(I,\cdot,\cdot)$ ((0,0), (0, π), (π ,0) and (π , π): one maximum, one minimum point and two saddle points) always belong to the crest $\mathcal{C}(I)$.
- $\mathcal{L}^*(I,\theta)$ is nothing else but \mathcal{L} evaluated on the crest $\mathcal{C}(I)$.
- $\theta = \varphi Is$ is constant on the NHIM line $R(I, \varphi, s)$

Figure: Level curves of \mathcal{L} for $\mu = a_1/a_2 = 0.5$, I = 1.2 and $g(\varphi, s)$.

Geometrical interpretation

Understanding the behavior of the crests

Understanding the behavior of the Reduced Poincaré function

Understanding the Scattering map

First case: $g(\varphi, s) = 0 < |\mu| < 0.97$

• For $|\mu\alpha(I)| < 1$, there are two crests $\mathcal{C}_{\mathsf{M},\mathsf{m}}(I)$ parameterized by:

$$s = \xi_{M}(I, \varphi) = -\arcsin(\mu\alpha(I)\sin\varphi) \mod 2\pi$$

$$\xi_{m}(I, \varphi) = \arcsin(\mu\alpha(I)\sin\varphi) + \pi \mod 2\pi$$
(7)

They are "horizontal" crests

First case: $g(\varphi, s) = 0 < |\mu| < 0.625$

- For each I, the NHIM line $R(I, \varphi, s)$ and the crest $\mathcal{C}_{M,m}(I)$ has only one intersection point.
- The scattering map $S_{\rm M}$ associated to the intersections between $C_{\rm M}(I)$ and $R(I, \varphi, s)$ is well defined for any $\varphi \in \mathbb{T}$. Analogously for S_m , changing M to m. In the variables $(I, \theta = \varphi - Is)$, both scattering maps S_M , S_m are globally well defined.

First case: $g(\varphi, s)$ 0.625 < $|\mu|$

- There are tangencies between $C_{M,m}(I,\varphi)$ and $R(I,\varphi,s)$. For some value of (I, φ, s) , there are 3 points in $R(I, \varphi, s) \cap \mathcal{C}_{M,m}(I)$.
- This implies that there are 3 scattering maps associated to each crest with different domains.(Multiple Scattering maps)

First case: $g(\varphi, s)$

 $0.625 < |\mu|$

- (c) The three types of level curves.
- (d) Zoom where the scattering maps are different

Figure: Level curves of $\mathcal{L}_{M}^{*}(I,\theta)$, $\mathcal{L}_{M}^{*(1)}(I,\theta)$ and $\mathcal{L}_{M}^{*(2)}(I,\theta)$

First case: $g(\varphi, s)$ $|\mu| > 0.97$

• For some values of I, $|\mu\alpha(I)| > 1$, the two crests $\mathcal{C}_{\mathsf{M,m}}$ are parameterized by:

$$\varphi = \eta_M(I, s) = -\arcsin(\mu\alpha(I)\sin s) \mod 2\pi$$

$$\eta_m(I, s) = \arcsin(\mu\alpha(I)\sin s) + \pi \mod 2\pi$$
(8)

They are "vertical" crests

First case: $g(\varphi, s)$ $|\mu| > 0.97$

For the values of I for which horizontal crests become vertical, it is not always possible to prolong in a continuous way the scattering maps, so the domain of the scattering map has to be restricted.

Figure: The level curves of $\mathcal{L}_{M}^{*}(I,\theta)$, $\mu=1.5$.

In green, the region where the scattering map $S_{\rm M}$ is not defined.

Definition: Highways

Highways are the level curves of \mathcal{L}^* such that

$$\mathcal{L}^*(I,\theta) = \frac{2\pi a_1}{\sinh(\pi/2)}.$$

- The highways are "vertical" in the variables (φ, s)
- We always have a pair of highways. One goes up, the other goes down (this depends on the sign of $\mu = a_1/a_2$)
- The highways give rise to fast diffusing pseudo-orbits

Figure: The scattering map jumps $\mathcal{O}(\varepsilon)$ distances along the level curves of $\mathcal{L}^*(I,\theta)$

Figure: In red: Inner map, blue: Scattering map, black: Highways, $\mu=1.5$.

An estimate of the total time of diffusion between $-I^*$ and I^* , close to the highway, is

$$T_{\rm d} = \frac{T_{\rm s}}{\varepsilon} \left[2 \log \left(\frac{{\it C}}{\varepsilon} \right) + \mathcal{O}(\varepsilon^b) \right], \ {\rm for} \ \varepsilon \to 0, \ {\rm where} \ 0 < b < 1,$$

with

$$T_{\rm s} = T_{\rm s}(I^*, a_1, a_2) = \int_0^{I^*} \frac{-\sinh(\pi I/2)}{\pi a_1 I \sin \psi_{\rm h}(I)} dI,$$

where $\psi_h=\theta-I au^*(I, heta)$ is the parameterization of the highway $\mathcal{L}^*(I,\psi_h)=A_2$, and

$$C = C(I^*, a_1, a_2) = 16 |a_1| \left(1 + \frac{1.465}{\sqrt{1 - \mu^2 A^2}}\right)$$

where $A = \max_{I \in [0,I^*]} \alpha(I)$, with $\alpha(I) = \frac{\sinh(\frac{\pi}{2})I^2}{\sinh(\frac{\pi}{2})}$ and $\mu = a_1/a_2$.

Note: This estimate agrees with the upper bounds given in [Bessi-Chierchia-Valdinoci01] and quantifies the general optimal diffusion estimate $\mathcal{O}\left(\frac{1}{\varepsilon}\log\frac{1}{\varepsilon}\right)$ of [Berti-Biasco-Bolle03] and [Treschev04].

Second case: $g(\varphi, \sigma), \ \sigma = \varphi - s$

Now we describe the case which the perturbation takes the form

$$h(\varphi,\sigma)=\cos q\left(a_1\cos\varphi+a_2\cos\sigma\right),$$

where $\sigma = \varphi - s$.

In the second case:

- For $|\mu\alpha(I)| < 1$, there are two crests $\mathcal{C}_{\mathsf{M},\mathsf{m}}(I)$ parameterized by $\sigma = \xi_{\mathsf{M}}(I,\varphi)$ and $\xi_{\mathsf{m}}(I,\varphi)$. For $|\mu\alpha(I)| > 1$, $\mathcal{C}_{\mathsf{M},\mathsf{m}}(I)$ parameterized by $\varphi = \eta_{\mathsf{M}}(I,\sigma)$ and $\eta_{\mathsf{m}}(I,\sigma)$. The crests lie on the plane (φ,σ)
- There are no Highways.
- For any value of $\mu = a_1/a_2$ is possible to find I_h and I_v such that for $I = I_h$ the crests are horizontal and for $I = I_v$ the crests are vertical.
- ullet For any value of μ there exists I such that the crests and some NHIM line are tangent. There are always multiple scattering maps

From the definitions of $R(I, \varphi, s)$ and C(I), we have

$$R(I,\varphi,s) \cap C(I) = \{(I,\varphi - I\tau^*(I,\varphi,s), s - \tau^*(I,\varphi,s))\}.$$

Introducing

$$\tau^*(I,\theta) := \tau^*(I,\varphi - Is, 0), \quad \text{ with } \theta = \varphi - Is = (1-I)\varphi + I\sigma,$$

one can see that on the plane $(\varphi, \sigma = \varphi - s)$, the NHIM lines take the form

$$R_I(\varphi,\sigma) = \{(\varphi - I\tau, \sigma - (I-1)\tau), \tau \in \mathbb{R}\}$$

and that

$$R_I(\varphi,\sigma) \cap \mathcal{C}(I) = \{(\theta - I\tau^*(I,\theta), \theta - (I-1)\tau^*(I,\theta))\}.$$

Therefore, the function $\tau^*(I,\theta)$ is the time spent to go from a point (θ,θ) in the diagonal $\sigma = \varphi$ up to $\mathcal{C}(I)$ with a velocity vector $\mathbf{v} = -(I, I - 1)$.

The choice of the concrete curve of the crest and therefore of $\tau^*(I,\theta)$ is very important and useful.

Figure: Going down along NHIM lines

Figure: The "lower" crest

Green zones: I increases under the scattering map.

Red zones: I decreases under the scattering map.

Kinds of scattering maps

Figure: Going up along NHIM lines

Figure: The "upper" crest

Kinds of scattering maps

Figure: Minimal time

Figure: Minimal $|\tau^*|$ between "lower" and "upper" crest

In this picture we show a combination of 3 scattering maps.

Figure: First intersection

Figure: Minimal $|\tau^*|$ between $\mathcal{C}_{\mathrm{M}}(I)$ and $\mathcal{C}_{\mathrm{m}}(I)$

We consider an a priori Hamiltonian system

$$H_{\varepsilon}(p,q,I,\varphi,s) = \pm \left(\frac{p^2}{2} + \cos q - 1\right) + h(I) + \varepsilon f(q) g(\varphi,s), \quad (9)$$

where $I=(I_1,I_2), \ \varphi=(\varphi_1,\varphi_2), \ f(q)=\cos q, \ h(I)=\Omega_1I_1^2/2+\Omega_2I_2^2/2$ and

$$g(\varphi, s) = a_1 \cos \varphi_1 + a_2 \cos \varphi_2 + a_3 \cos s. \tag{10}$$

- The unperturbed system consists of a pendulum plus two rotors.
- This is a direct generalization of the case considered in the first case.

Theorem (Arnold diffusion for a two-parameter family)

Assume $a_1a_2a_3 \neq 0$ and $|a_1/a_3| + |a_2/a_3| < 0.625$ in Hamiltonian (9)+(10). Then, for any two actions I_\pm and any δ there exists $\varepsilon_0 > 0$ such that for every $0 < |\varepsilon| < \varepsilon_0$ there exists an orbit $\tilde{x}(t)$ and T > 0 such that

$$|I(\tilde{x}(0)) - I_-| \le \delta$$
 and $|I(\tilde{x}(T)) - I_+| \le \delta$

A case with 3 + 1/2 d.o.f

Arnold diffusion

For $|a_1/a_3|+|a_2/a_3|<0.625$ there are two horizontal crests $\mathcal{C}_{\mathsf{M},\mathsf{m}}(I)$, and both scattering maps \mathcal{S}_{M} , \mathcal{S}_{m} are globally well defined.

Figure: Horizontal crests: $a_1/a_3 = a_2/a_3 = 0.48$, $\Omega_1 I_1 = \Omega_2 I_2 = 1.219$.

Diffusing orbits are found by shadowing orbits of both scattering maps and the inner dynamics.

Remark

Actually, we can prove that given any two actions I_{\pm} and any path $\gamma(s)$ joining them in the actions space, there exists an orbit $\tilde{x}(t)$ such that $I(\tilde{x}(t))$ is δ -close to $\gamma(\Psi(t))$ for some parameterization Ψ .

A case with 3+1/2 d.o.f

Highways

We define a Highway as an invariant set $\mathcal{H}=\{(I,\Theta(I))\}$ of the Hamiltonian given by the reduced Poincaré function $\mathcal{L}^*(I,\theta)$ which is contained in the level energy $\mathcal{L}^*(I,\theta)=A_3$. It is therefore a Lagrangian manifold, there exists a function F(I) such that $\Theta(I)=\nabla F(I)$. Therefore.

$$\frac{\partial \Theta_1}{\partial I_2} = \frac{\partial \Theta_2}{\partial I_1}, \text{ i.e., } \frac{\partial^2 F}{\partial I_2 \partial I_1} = \frac{\partial^2 F}{\partial I_1 \partial I_2}.$$

Proposition

Consider the Hamiltonian (9)+(10). Assume $a_1a_2a_3 \neq 0$ and $|a_1/a_3| + |a_2/a_3| < 0.625$. For I_1 and I_2 close to infinity, the function F takes the asymptotic form

$$\begin{split} F(I) &= \frac{3\pi}{2} \left(\textit{I}_{1} + \textit{I}_{2} \right) - \sum_{i=1,2} \frac{2\textit{a}_{i} \sinh(\pi/2)}{\pi^{4} \Omega_{i}} \left(\pi^{3} \omega_{i}^{3} + 6\pi^{2} \omega_{i}^{2} + 24\pi \omega_{i} + 48 \right) e^{-\pi \omega_{i}/2} \\ &+ \mathcal{O}(\omega_{1}^{2} \omega_{2}^{2} e^{\pi(\omega_{1} + \omega_{2})/2}), \end{split}$$

A case with 3+1/2 d.o.f

Highways

Proposition

(Highways in a very special case) Consider the Hamiltonian (9)+(10) and $a_1=a_2=a$ satisfying $2|a/a_3|<0.625$ and $\Omega_1=\Omega_2=\Omega$. Let $\mathcal{O}=\left\{(I^0,\theta^0),\ldots,(I^N,\theta^N)\right\}$ be an orbit in a highway, $N\in\mathbb{N}$ such that $I_1^0=I_2^0$ and $\theta_1^0=\theta_2^0$. Then, $I_1^i=I_2^i=\overline{I}^i$ and $\theta_1^i=\theta_2^i=\overline{\theta}^i$ for any $i\in\{0,\ldots,N\}$ and can be described by

$$\bar{\theta}_h(\bar{I}) = \begin{cases} \arccos\left(\frac{A_3(1-f(\bar{I}))}{A(\bar{I})}\right) + \bar{\omega}\arccos(f(\bar{I})), & \bar{I} \leq 0; \\ \arccos\left(\frac{A_3(1-f(\bar{I}))}{A(\bar{I})}\right) - \bar{\omega}\arccos(f(\bar{I})), & \bar{I} > 0; \end{cases}$$

or

$$\bar{\theta}_{H}(I) = \begin{cases} -\arccos\left(\frac{A_{3}(1-f(\bar{I}))}{A(\bar{I})}\right) - \bar{\omega}\arccos(f(\bar{I})), & \bar{I} \leq 0; \\ -\arccos\left(\frac{A_{3}(1-f(\bar{I}))}{A(\bar{I})}\right) + \bar{\omega}\arccos(f(\bar{I})), & \bar{I} > 0; \end{cases}$$

where
$$f(\bar{I})=\bar{\omega}A_3-\sqrt{A_3^2+(\bar{\omega}-1)\bar{I}^2A^2(\bar{I})}/\left[A_3(\bar{\omega}^2-1)\right]$$
 and $\bar{\omega}=\bar{I}\Omega_1$.

Thank you very much.

Muchas gracias.

Moltes gràcies.

Muito obrigado.

Bibliography

A short bibliography

- Berti, Biasco, Bolle. Drift in phase space: a new variational mechanism with optimal diffusion time. J. Math. Pures Appl. 2003.
- Delshams, de la LLave, Seara. A Geometric Approach to the Existence of Orbits with Unbounded Energy in Generic Periodic Perturbations by a Potential of Generic Geodesic Flows of T². Comm. Math. Phys.. 2000.
- Delshams, de la Llave, Seara. A geometric mechanism for diffusion in Hamiltonian systems overcoming the large gap problem: heuristic and rigorous verification on a model. Mem. Amer. Math. Soc.. 2006.
- Delshams, de la Llave, Seara. Instability of high dimensional Hamiltonian systems: Multiple resonances do not impede diffusion. *Advances in Mathematics*. 2016.
- Delshams, Huguet. Geography of resonanes and Arnold diffusion in a priori unstable Hamiltonian systems. Nonlinearity. 2009.

Bibliography

A short bibliography

- Delshams, Huguet. A geometric mechanism of diffusion: Rigorous verification in a priori unstable Hamiltonian systems. J. Differential Equations. 2011.
- Delshams, Schaefer. Arnold Diffusion for a complete family of perturbations. Regular and Chaotics Dynamics. 2017.
- Delshams, Schaefer. Arnold diffusion for a complete family of perturbations with two independent harmonics. Discrete and Continuous Dynamical Systems. 2018.
- Gidea, de la Llave, Seara. A general mechanism of diffusion in Hamiltonian systems: Qualitative results. arXiv. 2014.
- Treschev. Evolution of slow variables in a priori unstable Hamiltonian systems. Nonlinearity . 2004.