Tema 2. Teoría de conjuntos

Problemas.

1. Consideramos las proposiciones:

p = "Marte es un estrella".

$$q = "2 + 2 = 4.$$

r = "Una hora son 60 minutos".

s = "La única solución de la ecuación $x^2 - 4 = 0$ es 2".

Di si las siguientes proposiciones son verdaderas o falsas:

$$p \land q, \ p \lor q, \ p \lor s, \ p \Rightarrow q, \ p \Rightarrow s, \ q \Rightarrow r, \ p \Leftrightarrow q, \ p \Leftrightarrow s, \ (p \lor q) \Rightarrow s, \ r \lor \neg s, \ q \Rightarrow \neg r, \ \neg p \Leftrightarrow \neg s.$$

2. Consideramos los subconjuntos $A = \{1, 2, 3, 4, 5\}, B = \{1, 3, 6\}, C = \{2, 5\}, D = \emptyset$ del conjunto $X = \{1, 2, 3, 4, 5, 6\}$. Calcula:

$$\overline{A}^X$$
, \overline{D}^X , \overline{X}^X , $A \cap B$, $A \setminus C$, $B \cup C$, $C \cap D$, $X \cap D$, $\overline{A}^X \cup (B \cap C)$, $A \cap (B \cup C)$, $\overline{C}^X \cup (\overline{A}^X \cup \overline{B}^X, B \times C)$.

- **3.** Analiza las propiedades de las siguientes relaciones binarias en el conjunto $A = \{1, 3, 6\}$ y di cuáles son relación binaria de orden y cuáles de equivalencia:
- i) Si $a, b \in A$, $a\Re b$ si a = b.
- ii) $\Re = \{(1,1), (1,3), (1,6), (3,3), (3,6), (6,6)\}$
- iii) $\mathfrak{R} = A \times A$.
- iv) Si $a, b \in A$, $a\Re b$ si b a = 2.
- **4.** En el conjuntode las fracciones $F = \{\frac{a}{b} \mid a, b \in \mathbb{Z}, b \neq 0\}$ consideramos la relación binaria:

Si
$$\frac{a}{b}$$
, $\frac{c}{d} \in F$, $\frac{a}{b}\Re \frac{c}{d}$ si $a + d = b + c$.

Demuestra que es una relación binaria de equivalencia y calcula la clase de equivalencia de $\frac{1}{2}$.

5. Indica cuáles de las siguientes correspondencias son aplicaciones y en caso afirmativo estudia si son inyectivas, suprayectivas y biyectivas.

i)
$$f = (A, B, F)$$
 donde $A = \{1, 2, 3, 4\}, B = \{1\} \text{ y } F = \{(1, 1), (2, 1), (3, 1), (4, 1)\}.$

- ii) f = (A, B, F) donde $A = \{1, 2\}, B = \{1, 2, 3\}$ y $F = \{(1, 2)\}.$
- iii) f = (A, B, F) donde $A = \{1, 2, 3\}, B = \{1, 2\}$ y $F = \{(1, 2), (2, 1), (3, 1), (3, 2)\}.$
- iv) f = (A, B, F) donde $A = \{1, 2, 3\}, B = \{1, 2\}$ y $F = \{(1, 2), (2, 1), (3, 1)\}.$
- v) f = (A, B, F) donde $A = \{1\}, B = \{1, 2, 3\}$ y $F = \{(1, 3)\}.$
- vi) f = (A, B, F) donde $A = \{1, 2, 3\}, B = \{1, 2, 3\}$ y $F = \{(1, 3), (2, 1), (3, 2)\}.$
- 6. Estudia si son inyectivas, suprayectivas y biyectivas las siguientes aplicaciones:
- i) $f: \mathbb{R} \longrightarrow \mathbb{R} \mid f(x) = 2x 1$.
- ii) $f: \mathbb{R} \longrightarrow \mathbb{R} \mid f(x) = x^2 4$.
- $\mathbf{iii}) f: \mathbb{R}^2 \longrightarrow \mathbb{R}^+ \cup \{0\} \mid f(x, y) = |x y|.$
- iv) $f: \mathbb{N} \longrightarrow \mathbb{R} \mid f(x) = x$.
- **v)** $f: \mathbb{N} \longrightarrow \mathbb{N} \mid f(x) = x$.
- **vi)** $f: \mathbb{R} \setminus \{-1\} \longrightarrow \mathbb{R} \mid f(x) = \frac{x+2}{x+1}$.
- **vii)** $f: \mathbb{R}^2 \longrightarrow \mathbb{R}^2 \mid f(x) = (x+1, x^2).$